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The equivalent behavior among analogous block copolymer systems involving chemically distinct
molecules or mathematically different models has long hinted at an underlying universality, but only
recently has it been rigorously demonstrated by matching results from different simulations. The profound
implication of universality is that simple coarse-grained models can be calibrated so as to provide
quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of
this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice
model. The simulation successfully predicts the peak in the disordered-state structure function, the position
of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with
experiment. This could mark a new era of precision in the field of block copolymer research.
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Block copolymers comprise a diverse family of self-
assembling structured polymers with an ever-growing range
of applications [1–5]. The testing ground for our under-
standing of their behavior is the simple linear AB diblock
architecture, consisting of NA A-type segments of statistical
length aA joined to NB B-type segments of statistical length
aB (segments are defined to have a common volume of
ρ−10 ). Most of the theoretical work on these molecules is
based on the standard Gaussian-chain model [6], where the
incompatibility of the A and B segments is controlled by a
phenomenological Flory-Huggins interaction parameter,
χ. In mean-field theory, the tendency for the A and B blocks
to segregate into ordered morphologies is controlled by
the product χN and the geometry of the morphology is
controlled by the composition fA ≡ NA=N, where
N ≡ NA þ NB. The ratio of the segment lengths, aA=aB,
has a relatively minor effect on the behavior.
Fredrickson and Helfand (FH) [7] long ago predicted

that the corrections to mean-field theory are controlled by
the invariant polymerization index N̄ ¼ a6ρ20N, where
a ¼ ½fAa2A þ ð1 − fAÞa2B�1=2 is the average segment length.
The implication is that high molecular-weight diblocks
exhibit universal behavior when expressed in terms of χN,
fA, aA=aB, and N̄. In particular, the FH theory predicts that
symmetric diblocks (i.e., fA ¼ 0.5 and aA ¼ aB) transform
from a disordered phase to a lamellar morphology at
ðχNÞODT ¼ 10.495þ 41.0N̄−1=3. The relevant system
parameters all have clear unambiguous definitions, apart
from χ. Common practice is to approximate the interaction
parameter by

χðTÞ ¼ A
T
þ B; ð1Þ

where the fitting parameters A and B are adjusted so that the
experimental order-disorder transition (ODT) or structure

function SðqÞ from small-angle scattering matches the
predictions from FH [8]. When expressed in terms of
the relevant parameters, experiments on chemically differ-
ent diblock copolymers do indeed appear reasonably
universal in that their phase diagrams are all qualitatively
similar [9]. The same is true of simulations involving
different models [10–14]. However, no one has seriously
claimed that the universality among experiments and
simulations is quantitatively precise, that is until recently.
Morse and co-workers have, in fact, suggested that the

universality becomes mathematically exact for sufficiently
large molecules. Focusing on the symmetric diblock, they
have gone on to provide compelling evidence for this
profound hypothesis. Their first major advance was a
rigorous renormalized one-loop (ROL) calculation for
SðqÞ [15], which confirmed the long-held belief that the
N̄ → ∞ limit corresponds to mean-field theory. Shortly
after, they accurately matched SðqÞ from different simu-
lation models, supporting the notion of universality [16].
Their most recent accomplishment was a method of
defining χ by matching the peak of the structure function
Sðq�Þ to that of ROL [17]. With this definition, they
successfully collapsed the ODTs from five different sim-
ulation models onto a single master curve given by the
empirical relation,

ðχNÞODT ¼ 10.495þ 41.0N̄−1=3 þ 123.0N̄−0.56: ð2Þ

It is a testament to universality that this was accomplished
with a wide selection of models including one involving
hard-core interactions between the monomers, several more
coarse-grained models with soft interactions, as well as the
simple lattice model that we will be using in the current
study. To date, the universality has been demonstrated for a
range of other quantities: the free energy, the latent heat of
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the transition, and the period, composition profile, and
compressibility of the ordered lamellar phase [18].
Our aim is to demonstrate the true significance of

universality, which is that experimental results can be
accurately predicted using simple coarse-grained models.
Gillard et al. [19] recently attempted such a demonstration,
but with limited success. They focused on a polyisoprene-
polylactide (PI-PLA) diblock copolymer with an ODT of
TODT ¼ 96� 1 °C. The molecule was of composition
fPLA ¼ 0.51 and polymerization N ¼ 39 (based on
ρ−10 ¼ 118 Å3). The literature values for its segment
lengths are aPI ¼ 6.1 and aPLA ¼ 7.0 Å, but Gillard et al.
had to scale them up to aPI ¼ 7.2 and aPLA ¼ 8.3 Å in
order to fit the peak heights Sðq�Þ and peak positions q� of
the experimental scattering patterns to ROL, which in turn
increased N̄ from 231 to 611. The resulting fit gave
A ¼ 381 and B ¼ −0.48 for the coefficients of χðTÞ,
implying that ðχNÞODT ¼ 21.8� 0.1, which is about
15% higher than the 18.7 predicted by Eq. (2). The
simulations also predicted the latent heat of the transition
to be ðΔHÞODT ¼ 0.36 J=g, which is 40% higher than the
measured value of 0.26� 0.02 J=g [20].
Although the comparison is reasonable, it is not at the

level one would expect if the universality is actually exact.
It is also difficult to justify the ∼20% increase in the
segment lengths. The authors noted and later demonstrated
[21] that polydispersity could be a contributing factor to the
disagreement, given that the experimental molecules had a
polydispersity index of Đ ¼ 1.10, while Eq. (2) and the
ROL used to calibrate χðTÞ both assume monodisperse
molecules. It is indeed well understood from mean-field
theory [22–24] and Monte Carlo simulations [25] that
polydispersity causes a significant increase in domain
size and thus shifts the peak in SðqÞ to lower q (see
Supplemental Material [26]).
Here, we account for the effects of polydispersity by

performing simulations on polydisperse molecules using
the exact same lattice model as in Ref. [17]. The simu-
lations are done in the canonical ensemble with a fixed
number of polymers, n, each modeled as a sequence of
beads (or monomers) connected by bonds of length b. The
numbers of monomers in the γ blocks of a molecule (γ ¼ A
and B) are given by independent Schulz-Zimm distribu-
tions [27,28] with number-average polymerizations of
ðNγÞn and polydispersity indexes of Đγ ≡ ðNγÞw=ðNγÞn
(see Supplemental Material [26]). For polydisperse poly-
mers, we define N ≡ ðNAÞn þ ðNBÞn and fA ≡ ðNAÞn=N.
To simplify the simulation, the monomers are restricted to a
periodic fcc lattice with a maximum of one monomer per
lattice site and bonded monomers occupying nearest-
neighbor sites. Note that the nearest-neighbor spacing is
set to b ¼ 21=6 ¼ 1.122, such that the volume of the system
V equals the total number of lattice sites. To allow room
for the polymers to move, the lattice is only filled to a
monomer density of ρ0 ≡ nN=V ¼ 0.8. Molecular

interactions are limited to neighboring A and B monomers
with an interaction strength of ϵAB. The simulations are
performed by applying the standard Metropolis algorithm
using three types of Monte Carlo moves, slithering snake,
chain reversal, and crankshaft, with relative frequencies of
7∶1∶2 (see Ref. [29] for further details).
Our model has already been fully calibrated in Ref. [17].

From that, we know that its statistical segment length is
given by a ¼ 1.233b ¼ 1.384, which implies N̄ ¼ 4.506N.
Furthermore, the previous study showed that the interaction
parameter is well approximated by

χðαÞ ¼ z∞αþ c1α2

1þ c2α
; ð3Þ

where α≡ ϵAB=kBT and z∞ ¼ 4.897 is the average number
of intermolecular contacts a monomer experiences in the
limit α ¼ 0 and N → ∞. The fitting parameters, c1 ¼ 88.5
and c2 ¼ 8.30, were obtained in Ref. [17] by matching
curves of Sðq�Þ vs χN from monodisperse simulations to
ROL across the entire disordered phase for seven different
chain lengths ranging from N ¼ 20 to 180. For the current
simulations, we represent the PI-PLA diblock by setting
ðNAÞn ¼ ðNBÞn ¼ 25 and ĐA ¼ ĐB ¼ 1.2, which gives
fA ¼ 0.5, N̄ ¼ 225 and Đ ¼ 1.1 [30]. All our simulations
are performed in a cubic simulation box of volume
V ¼ 171500, containing n ¼ 2744 molecules.
In order to calibrate the experimental interaction param-

eter χðTÞ we first need to simulate the disordered-state
structure function,

SðqÞ ¼ 1

4V

�����
XV
j¼1

σj expðiq · rjÞ
����
2�

; ð4Þ

where angle brackets denote ensemble average, rj is the
position of the jth lattice site, and σj ¼ 1, 0 or −1 if the site
is occupied by an A monomer, a vacancy or a B monomer,
respectively. Results are plotted in Fig. 1 for several
different interaction strengths in the disordered phase. To
illustrate the effect of polydispersity, SðqÞ is simulated for
both monodisperse and polydisperse diblocks. Because of
the finite size of our simulation box, SðqÞ is only defined
for a discrete set of wave vectors, q. To accurately extract
the peak position q� and peak height Sðq�Þ we fit our
simulation data to the RPA structure function [23–25] (see
Supplemental Material [26]).
The peak heights Sðq�Þ for monodisperse (squares) and

polydisperse (circles) diblocks are plotted in Fig. 2 as a
function of χN using Eq. (3). Because our model is already
calibrated, the monodisperse results match the ROL pre-
diction, which Gillard et al. [19] used to determine χðTÞ for
the experimental system. Here, we instead fit the exper-
imental results (crosses) to our polydisperse simulation,
which gives A ¼ 534 and B ¼ −0.82. Polydispersity
clearly has a sizable effect on Sðq�Þ, and thus our analysis

PRL 117, 217801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

217801-2



provides a far more accurate estimation of χðTÞ. With our
improved calibration, the experimental ODT now maps
to ðχNÞODT ¼ 24.5� 0.2.
To check the consistency of our simulations with the

experiment, Fig. 3 compares the peak position q� of the
structure function. For the experiment, the peak is scaled
with respect to the average segment length, a ¼ 6.6 Å,
obtained from the literature values of aPI and aPLA. It is

clear that the experimental results are completely consistent
with the polydisperse simulation (circles), whereas the
results for the monodisperse simulation (squares) are
16%–22% larger. This is the approximate factor by which
Gillard et al. had to increase the literature value of a,
leading them to assume N̄ ¼ 611 instead of 231. Evidently,
the factor was simply compensating for the fact that the
ROL prediction used in their analysis was specific to
monodisperse polymers.
Equation (2) predicts ðχNÞODT ¼ 23.0 for N̄ ¼ 231, but

this again assumes monodisperse polymers. To account for
polydispersity, we locate the ODT by simulation. This is
done by evaluating the average number of A-B contacts,
hnABi, as a function of χN using parallel tempering [13]. To
gauge the level of metastability, Fig. 4 plots results from
two separate simulations. The first (circles) initialized the
system with a configuration equilibrated in the disordered

FIG. 1. Disordered-state structure function SðqÞ, calculated for
(a) monodisperse and (b) polydisperse melts at different values of
α ¼ ϵAB=kBT. The solid curves are fits using the RPA structure
function.

FIG. 2. Peak in the disordered-state structure function Sðq�Þ
from simulations of monodisperse (squares) and polydisperse
(circles) diblock copolymers compared to that of the experiment
(crosses). Experimental results are plotted using A ¼ 534 and
B ¼ −0.82 for χðTÞ.

FIG. 3. Peak position q� of the disordered-state structure
function SðqÞ from simulations of monodisperse (squares) and
polydisperse (circles) diblock copolymers compared to that of the
experiment (crosses). Experimental results are plotted using
a ¼ 6.6 Å.

FIG. 4. Average number of A-B contacts, hnABi, as a function of
the interaction parameter χðαÞ from parallel tempering runs
initialized with disordered (circles) and lamellar (squares) con-
figurations shown by the insets. The arrows denote the exper-
imental ODT and the prediction from Eq. (2) for monodisperse
polymers.
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phase. At the higher values of χN, the system sponta-
neously orders into (300) and (221) lamellar phases,
resulting in a discontinuous reduction in hnABi. The
principle wave vectors of the (300) and (221) orientations
have the same magnitude, which, as expected, matches the
peak in SðqÞ at the ODT. Our second simulation (squares)
was initialized from one of the (300) configurations;
another simulation (not shown) initialized with a (221)
configuration gave equivalent results. Comparing the two
simulations in Fig. 4 reveals a narrow metastability interval,
where the lifetimes of the disordered and ordered phases
exceed our simulation time. From this, we conclude that
ðχNÞODT ¼ 24.8� 0.3, which nicely overlaps the exper-
imental result, 24.5� 0.2. Incidentally, Arora et al. [31]
have shown that the actual ODT from simulation tends to
be at the low-χN end of the metastability interval, which
agrees precisely with the experimental ODT.
The jump in the number of A-B contacts, ΔhnABi, in

Fig. 4 at the ODT is related to the latent heat of the
transition by [19]

ðΔHÞODT ¼ ΔhnABi
n

RA
χ0ðαODTÞMn

; ð5Þ

where R is the ideal gas constant and Mn ¼ 2750 g=mol is
the number-average molar mass of the diblock copolymer.
Inserting ΔhnABi=n ¼ 1.44 from our simulation gives
ðΔHÞODT ¼ 0.277 J=g, which agrees with the experiment
to within the reported uncertainty [20].
There are several sources of inaccuracy in our simulation

of the PI-PLA diblock copolymer melt. For instance, the
limitations of the lattice model prevent us from accounting
for the conformational asymmetry (i.e., aPLA=aPI ¼ 1.15).
Nevertheless, this asymmetry has little effect on SðqÞ and
the ODT in mean-field theory (see Supplemental Material
[26]), and this presumably remains the same when fluctua-
tions are included. There is also the issue that we had to
assume ĐA ¼ ĐB, since the experiment only measured the
overall polydispersity

Đ ¼ f2AðĐA − 1Þ þ ð1 − fAÞ2ðĐB − 1Þ þ 1: ð6Þ

Likewise, mean-field theory predicts that changing the
balance of polydispersity among the two blocks has little
effect on SðqÞ (see Supplemental Material [26]). Of course,
the actual molecular-weight distribution will differ some-
what from the Schulz-Zimm distribution, but we know that
the shape of the distribution has a negligible effect when Đ
is small [24,32]. Thus, the inaccuracies in our simulation
due to conformational asymmetry and the unknown details
of the polydispersity distribution should be relatively small.
The present agreement between experiment and simu-

lation cements the compelling evidence for the universality
hypothesis previously obtained by matching results from
different simulation models [17,18]. The significance of

this universality cannot be overstated. Without universality,
a detailed microscopic model would be required to obtain
quantitatively accurate predictions, but with the universal-
ity, even our simple lattice model is sufficient. One just
needs to determine the relevant system parameters (e.g., χ,
N, f, aA, aB, ĐA and ĐB). Apart from χ, all the parameters
are well defined for both experiment and simulation.
In principle, the particular experiment and simulation of

our study can be matched without referring to χ. We could
simply fit the experiment to our model by matching Sðq�Þ
vs T, assuming a nonlinear functional form for αðTÞ with
several fitting parameters. However, the universality applies
to all systems and so it is best to choose a more general
reference, the Flory-Huggins χ parameter. To do this, we
should fit experiments and simulations to the most accurate
theoretical prediction for the standard Gaussian-chain
model, and at the moment this is undoubtedly the ROL
prediction for SðqÞ, which becomes exact as N̄ → ∞.
Naturally, the universality will become inaccurate as N̄

decreases. Nevertheless, our demonstration worked for a
remarkably small value of N̄ ¼ 231, as was the case in
Ref. [17] where the ODTs of the different simulations were
matched down to N̄ ≈ 200. This begs the question of just
how far does the universality extend. It will most certainly
depend upon the details of the specific system. For
instance, the universality is certain to breakdown once
the polymers are short relative to their persistence length or
once the range of the interactions is no longer small relative
to the size of the molecules. We will have to wait for future
studies to see just how widely applicable the universality is,
but all indications are that it will be valid for most
experimental systems.
An important result from our study is the accurate

prediction of χðTÞ for PI-PLA interactions, which gives
χ ¼ 0.627 at TODT ¼ 96 °C as compared to the previous
estimations of 0.227 [33] and 0.552 [19]. Although our
prediction will be affected by statistical inaccuracy in the
simulation of SðqÞ, this is well controlled and relatively
minor. A more significant source of inaccuracy is the
experimental measurement of SðqÞ, given the involved
process required to obtain absolute scattering intensities
[19]. However, the largest source is likely from the
characterization of the PI-PLA diblock copolymer, in
particular the 5% uncertainty in N ¼ 39 [19]. Even if
we can determine values of χN accurately, any uncertainty
in N will necessarily limit the accuracy of χðTÞ by a similar
degree. Still, our estimate of χðTÞ is undoubtedly the most
accurate to date performed for any pair of chemical species.
The improved method of defining χðTÞ demonstrated in our
study coupled with precision experiments and synthesis
will hopefully lead to a new level of accuracy in determin-
ing χðTÞ for other chemical pairs. With the added precision,
researchers will be well equipped to investigate subtle
effects in block copolymer materials using a combination
of theory, simulation, and experiment.
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In conclusion, we have shown that the accurate univer-
sality recently demonstrated among different simulation
models for diblock copolymer melts [17,18] also extends to
experiments. By matching the peak in the experimental
structure function Sðq�Þ of a PI-PLA diblock copolymer
melt [19,20] with that of a calibrated simulation model
[17], we provide what is undoubtedly the most accurate
estimation of χðTÞ for a pair of chemical species (i.e., PI
and PLA). This allowed us to directly compare the ODT of
the experiment with a Monte Carlo simulation in terms of
χN. The position of the ODTas well as the latent heat of the
transition quantitatively agree to within the small exper-
imental uncertainties and statistical inaccuracies. This
unprecedented agreement is likely to usher in a new era
of precision between experiment, simulation, and theory.
The key to achieving it was accounting for the modest
polydispersity in the experimental system (i.e., Đ ¼ 1.10),
emphasizing that researchers may have to start considering
effects that have gone largely ignored in the past.
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