
Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid

V. Goblot,1,* H. S. Nguyen,1,† I. Carusotto,2 E. Galopin,1 A. Lemaître,1 I. Sagnes,1 A. Amo,1 and J. Bloch1,3
1Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay,

C2N—Marcoussis, 91460 Marcoussis, France
2INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

3Département de Physique, Ecole Polytechnique, Université Paris Saclay, F-91128 Palaiseau Cedex, France
(Received 8 July 2016; published 16 November 2016)

We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear
dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the
polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the
polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes
transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the
fluid is experimentally evidenced.
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Dark solitons are among the fundamental nonlinear
collective excitations of one-dimensional (1D) quantum
degenerate fluids with positive mass and repulsive inter-
actions. They are characterized by a dip in a uniform
background density and a jump in the macroscopic phase
across it. The shape and size of the dip is given by the
interplay of mass and nonlinearity. Because of the univer-
sality of the mechanisms necessary to their formation, dark
solitons have been observed in a wide variety of systems
ranging from Bose-Einstein condensates of cold atoms
[1–3] and optical fibers [4], to thin magnetic films [5].
Interestingly, dark solitons have also been observed in
nonlinear open-dissipative systems, in particular, in semi-
conductor microcavities [6–9], and are attracting great
interest in view of photonic applications [10].
Semiconductor microcavities have recently appeared as

an excellent platform to study the nonlinear dynamics of
interacting Bose fluids in a photonic context [11]. Their
elementary excitations are exciton polaritons, bosonic
quasiparticles arising from the strong coupling between
quantum well excitons and photons confined in the micro-
cavity. While their excitonic component provides signifi-
cant repulsive interactions, the fast escape of photons out of
the microcavity makes polaritons an intrinsically open-
dissipative system, requiring continuous wave pumping to
achieve a steady state. A number of quantum fluid effects
has been studied in semiconductor microcavities, including
superfluidity [12], diffusive Goldstone modes [13],
Bogoliubov excitation spectrum [14], solitary bright waves
[15,16], and the hydrodynamic nucleation of quantized
vortices [17,18] and dark solitons [7,8].
In addition to the possibility of in situ and time-resolved

imaging of the fluid dynamics, a remarkable feature of
driven-dissipative systems is that a resonant drive allows
setting the local phase of the wave function [11]. It is then
possible to externally manipulate the boundary conditions

and impose a controlled phase pattern across a polariton
fluid. This was first explored in a two-dimensional polar-
iton condensate in which a spatial vortex phase profile was
imposed on the polariton field, resulting in persistent
currents with high orbital momentum [19]. This technique
opens up a new world for the exploration of the elementary
excitations of polariton quantum fluids. In particular, it has
been proposed that by imposing a phase twist across the
fluid via the external pumping, the superfluid fraction could
be measured [20], different Josephson dynamical regimes
could be addressed [21,22], and the controlled nucleation
of dark solitons could be implemented [23].
In this Letter, we report on the study of counterpropagat-

ing interacting polariton fluids resonantly excited in a 1D
semiconductor cavity. At high excitation power, polariton-
polariton interactions are responsible for the self-
organization of a dark soliton train, which is directly
evidenced by spatial imaging of the 1D channel. When
scanning the excitation power, the abrupt disappearance of
solitons reflects the discrete nature of these nonlinear
excitations. Interestingly, varying the phase difference
between the two pumping beams, we are able to impose
a phase twist across the fluid which controls not only the
position of the soliton train, but also the parity of their
number. A novel type of bistable behavior appears when
scanning the phase twist up and down, at constant power.
Our sample, grown by molecular beam epitaxy, consists

of a λ GaAs cavity surrounded by two Ga0.9Al0.1As=
Ga0.05Al0.95As Bragg mirrors with 26 (30) pairs in the
top (bottom) mirror. A single 8 nm In0.05Ga0.95As quantum
well is inserted at the cavity center. The Rabi splitting
resulting from the exciton-photon strong coupling amounts
to 3.5 meV. Electron beam lithography and dry etching are
used to fabricate photonic wires of 3 μmwidth and 200 μm
length [Fig. 1(b)]. The experiments are performed at a
temperature of 10 K. The photoluminescence is collected in
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transmission geometry through the sample back, and real-
and momentum-space emission is imaged on a CCD
camera coupled to a spectrometer. A polarizer selects the
emission polarized along the wire.
First, the polariton dispersion in the wire has been

characterized by nonresonant photoluminescence, using a
cw single-mode Ti:sapphire laser. Figure 1(a) shows the
momentum-space emission, evidencing the lower and
upper polariton 1D subbands. We deduce an exciton-
photon detuning δ¼ECðk¼0Þ−EXðk¼0Þ≈−3.5meV,
where ECðkÞ is the bare photon energy and EXðkÞ the
bare exciton energy. Close to k ¼ 0, the lower polariton
branch can be approximated by a parabola, EðkÞ ¼ E0þ
ℏ2k2=2m, where m ¼ 4 × 10−5me is the polariton effective
mass and me the free electron mass.
The focus of this Letter is to investigate the dynamics of

a pair of counterflowing polariton fluids. To create them,
we use a resonant cw laser split in two separate beams,
linearly polarized along the wire and focused at normal
incidence onto two 8 μm diameter spots separated by a
distance d. The laser energy ℏωp is blueshifted by ΔE ¼
ℏωp − E0 with respect to the lower polariton energy E0 at
k ¼ 0 [see Fig. 1(a)]. The phase difference Δφ between the
two beams can be varied using a delay stage controlled by a
piezoelectric actuator added to the path of one of the
excitation beams.
Figure 1(c) shows the polariton emission, spatially

resolved along the wire, measured for a low pumping
power P ¼ 8 mW well in the linear regime. The saturated
bright regions correspond to the excitation spots positions,

and the bright regions outside the wire, above and below
the spots, correspond to laser light scattered by the wire
edges, and are thus not relevant. Even though the excitation
spots are at normal incidence, their finite angular aperture
allows injecting polaritons with wave vectors kf ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mΔE
p

=ℏ ¼ �0.53 μm−1 [11]. Between the two exci-
tation spots, we observe a regular fringe pattern with a
spacing of s ¼ 6.0 μm ¼ π=kf, arising from interference of
the two counterpropagating polariton waves (a sinusoidal
fit of the fringe pattern is shown in the Supplemental
Material [24]). The position of the fringe pattern is
determined by the boundary conditions imposed by the
excitation spots, namely, the distance between them and
their phase difference Δφ. When Δφ is scanned, we
observe a continuous spatial displacement of the interfer-
ence pattern [see Fig. 1(e)], a behavior characteristic of the
linear regime.
Superfluidity and the nucleation of dark solitons are

features of quantum fluids showing up when the inter-
particle interaction energy is comparable to the kinetic
energy. In our system, the interaction energy is ℏgn, where
g is the polariton-polariton interaction constant and n the
polariton density, controlled by the excitation power. When
the latter is ramped up into the nonlinear regime, a first
threshold is observed when the blueshift due to polariton-
polariton interactions under the pump spots equals ΔE,
resulting in an abrupt increase of the polariton density
[see Fig. 2(d)]. When the power is further ramped up, a
second threshold is observed with a change of the spatial

FIG. 1. (a) Far-field photoluminescence measured under non-
resonant pumping. (Solid lines) Theoretical fits of the lower and
upper polariton branches and (dashed lines) bare exciton and
photon energy. The horizontal segment shows the energy
and width for the resonant excitation conditions. (b) Sketch of
the experimental configuration. (c) Spatially resolved emission
measured along the wire in the linear regime, for P ¼ 8 mW,
ΔE ¼ 0.27 meV, d ¼ 50 μm, and Δφ ≈ 0. Dotted lines indicate
the wire edges. The color scale is saturated in regions under the
spots. (d) Measured intensity profile integrated in the transverse
direction. (e) Intensity profile measured along the wire as a
function of Δφ for similar pumping parameters, well in the linear
regime.

FIG. 2. (a) Spatially resolved emission measured along the
wire for P ¼ 23 mW (ΔE ¼ 0.27 meV, d ¼ 50 μm, Δφ ≈ 0).
(b) Intensity profile integrated over the transverse direction.
(c) Corresponding calculated emission profile. (d) Total measured
emission intensity (integrated along both the transverse and
longitudinal directions) as a function of pump power. The shaded
gray region corresponds to the linear regime. (e) Measured and
(f) calculated emission profile when scanning the power up (the
low power data have been amplified by a factor of 10 for clarity).
The horizontal red [blue] line corresponds to the profile shown in
Fig. 1(d) [2(b)].
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pattern. A similar threshold behavior has been reported in a
1D polariton fluid in a configuration in which polaritons are
excited by a single beam and reflected by an external
potential [27].
A typical emission pattern above the second threshold is

shown in Fig. 2(a) for Δφ ≈ 0. It strongly differs from the
linear case [Fig. 1(c)]: two density dips, dropping almost to
zero, are visible in an otherwise almost constant high
density profile. Those dips are identified as dark solitons—
nonlinear collective excitations of the fluid. They are well
fitted by the characteristic hyperbolic tangent function, and
the characteristic π phase jump of the wave function across
the soliton was experimentally confirmed by measuring the
interference between the polariton emission and a constant-
phase reference beam [24].
Figure 2(e) reveals that the number of solitons depends

on the excitation power. Directly above the first threshold at
Pth ¼ 12 mW, four solitons are present in the region
between the spots. Further increasing the excitation power,
we observe at P ¼ 21 mW the abrupt expulsion of two
solitons so that only two of them remain. Interestingly, the
polariton density between the spots and outside of the dark
solitons is almost independent of the pumping power.
Notice that the observed expulsion of two solitons, replaced
by regions of high polariton density, is responsible for the
small jump in total emitted intensity that is visible at the
second threshold [see Fig. 2(d)]. Throughout the whole
power scan in Fig. 2(d), the number of solitons remains
even because of the symmetry of the excitation conditions.
Indeed, since we impose Δφ ≈ 0, the polariton wave
function must remain symmetric, implying an even number
of solitons.
To reproduce these experimental observations, we solve

a 1D Gross-Pitaevskii equation that includes pump and
loss terms, and consider only the lower polariton branch
[28]. The evolution of the polariton wave function ΨðxÞ is
given by

iℏ
∂Ψðx; tÞ

∂t ¼
�
E0 −

ℏ2

2m
∂2Ψðx; tÞ

∂x2 þ ℏgjΨðx; tÞj2
�
Ψðx; tÞ

− i
ℏγ
2
Ψðx; tÞ þ iFðxÞe−iωpt; ð1Þ

where γ is the polariton decay rate. FðxÞ ¼ F0fðxÞ, with
jF0j2 being proportional to the total power of the coherent
drive, and fðxÞ is a complex function describing the spatial
profile and the relative phase of the pump beams. The
steady-state solutions of the equation are obtained
numerically for the experimentally measured linewidth
ℏγ ¼ 47μeV, E0 ¼ 1478.57 meV, ΔE ¼ 0.27 meV and
Gaussian spots of width w ¼ 8 μm separated by
d ¼ 50 μm. We take an interaction constant ℏg ¼
0.3 μeV μm [29]. Figure 2(f) shows the calculated polariton
density jΨðxÞj2 as a function of the excitation power jF0j2.
The calculations perfectly reproduce the low power

interferences and the abrupt transition to the nonlinear
regime resulting in the nucleation of four dark solitons and,
at higher power, two dark solitons [Fig. 2(c)].
The nucleation of solitons in the nonlinear regime, and

the abrupt change in their number when increasing the
excitation power can be intuitively understood from the
hydrodynamics of the polariton flow. In the steady state, in
the central region far from the excitation spots, the real part
of Eq. (1) multiplied by Ψ�ðxÞ can be written as a “local”
energy conservation as follows:

ℏωp ¼ E0 −
ℏ2

2m
ReðΨ�∇2ΨÞðxÞ

nðxÞ þ ℏgnðxÞ: ð2Þ

The imaginary part of the steady state equation gives a
continuity equation that accounts for the losses due to the
finite polariton lifetime and the injection from the pumping
beams. Equation (2) shows that the energy per polariton is
fixed by ωp. Thus, locally, ℏωp must be equal to the sum of
three terms: the single-polariton energy E0 at k ¼ 0; a
kinetic term (−ðℏ2=2mÞ½ReðΨ�∇2ΨÞ=nðxÞ�); and a polar-
iton-polariton interaction term [ℏgnðxÞ].
The specific dark soliton profile at a given pump power is

a result of the local interplay between the kinetic and
interaction terms. In the core of a soliton, where the density
is low and its second order derivative is high, the kinetic
term dominates over interactions, while it is the opposite in
the high density regions far from the core. At pump
densities just above the first nonlinear threshold, the
polariton flow from the pump spots towards the central
region contains a high kinetic energy that needs to be
accommodated in the form of a large number of solitons,
four in the case depicted in Fig. 2(e) in the 12–21 mW
range. When the excitation power is further increased, the
higher density in the wire results in an increase of
interactions. In the balance established by Eq. (2), a higher
weight of the interaction term must be accompanied by a
decrease of the kinetic term, resulting in the expulsion
of solitons. The results of the numerical simulations
[Fig. 2(c), (f)] reproduce quantitatively the features
observed in the experiment: at low pump intensities, there
is just a linear interference whereas when interactions
become significant, the sinusoid transforms into a soliton
train, more precisely an elliptic function shape [24], as first
discussed in Refs. [30] and [31].
We now address bistability in the wire, a well-established

behavior displayed by nonlinear dissipative systems as a
function of driving intensity [11,32,33]. Usually this effect
is observed in a configuration where the polariton field is
frozen in a single mode. When, as in the present situation,
multimode polariton fluids are considered, the complex
spatial dynamics is expected to give rise to conceptually
different bistability or even multistability effects [34–36].
As a first example, we notice that the abrupt change in
soliton number occurs at different excitation powers when
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the power is scanned downard than when it is ramped up
[24]: two different soliton patterns can thus be observed for
the same excitation power.
An even more intriguing bistable behavior occurs when

the excitation power is kept constant while scanning the
phase twist Δφ across the polariton fluid imposed by the
excitation lasers. Figure 3(a)–3(d) shows the polariton
density profiles for a fixed excitation power and different
values of Δφ. For Δφ ¼ 0 [Fig. 3(a)] a symmetric profile is
observed with four solitons. On the contrary, when Δφ ¼ π
[Fig. 3(c)], an antisymmetric profile is measured, with only
three solitons, consistent with the antisymmetric boundary
conditions. The transition between the two situations takes
place abruptly when scanning Δφ, as shown in Fig. 3(e)
(white dashed lines), attesting to the nonlinear character of
the fluid [in contrast to the smooth rigid motion of fringes
in the linear regime that is visible in Fig. 1(e)]. This
transition can be understood in a similar way to the case of
Fig. 2, where a scan in power induces a change in
interaction energy. In the present situation, the phase twist
results in a change in kinetic energy across the fluid, which
is accommodated via the expulsion or addition of a soliton
to the fluid pattern. When approaching Δφ ¼ π, the choice
between the expulsion and the inclusion of a soliton is
settled by the most stable solution at the considered
excitation power.
Remarkably, when scanning Δφ in the upward and

downward directions for a fixed excitation power we
observe a bistable behavior, as predicted in Ref. [23]. In
Fig. 3(f), Δφ is now decreased, starting from the situation
Δφ ¼ 2π from Fig. 3(e). The expulsion or generation of

single solitons takes place at different values of Δφ than in
the upward scan. In other words, there exist values of the
phase difference between the beams, for which two differ-
ent profiles—with either four or three solitons—are stable:
we evidence a bistability entirely controlled by the relative
phase of the pumping beams.
The numerical simulations presented in Figs 3(g)

and 3(h) are in good qualitative agreement with the
measured phase scan, including the bistable behavior.
There are, however, some differences: the theoretical
patterns shown in the two panels transform into each other
under the Δφ → 2π − Δφ transformation, while in the
experiment, this symmetry is only approximately satisfied.
Indeed, the simulation shows a more regular displacement
of the soliton pattern than the measurement. For instance,
when three solitons are stable, the measured pattern appears
almost fixed in space for a wide range of Δφ. This can be
explained by the presence of disorder in the wire, as
confirmed by simulations when introducing a small poten-
tial dip to model a defect [24]. The slightly smaller
bistability range observed in the experiments as compared
to simulations could also be caused by disorder [24], as
well as by phase noise in the pump beams.
Figure 4 summarizes the measured number of solitons

versus Δφ in the upward and downward scans for different
configurations of excitation powers and distances d. Abrupt
switching between trains with N and N þ 1 solitons is
observed for N ranging from 0 to 3. In each of these
situations, we observe a well-defined phase-controlled
bistability.
In conclusion, we have demonstrated the ability to

generate and control soliton trains in a 1D polariton
quantum fluid. The ability to impose a controllable phase
twist across the fluid using a coherent drive allows us to
reveal a novel bistable behavior. This experimental con-
figuration offers a new perspective to explore the excitation
spectrum of soliton trains in pump and probe experiments.

FIG. 3. (a),(c) Spatially resolved emission for P ¼ 57 mW,
ΔE ¼ 0.37 meV, d ¼ 50 μm and (a) Δφ ≈ 0; (c) Δφ ≈ π. (b),(d)
Corresponding intensity profiles integrated over the transverse
direction. (e),(f) Measured and (g),(h) calculated intensity pro-
files for increasing (e),(g) and decreasing (f),(h) phase difference
Δφ between the spots. White dotted lines indicate the value ofΔφ
for which a soliton is expelled or generated. The measured
number of solitons is indicated in white.

(a)

(b)

(c)

(d)

FIG. 4. (a)–(d) Number of solitons measured when scanning
Δφ up (open symbols) and down (closed symbols). (a) Same
parameters as in Figs. 3(e) and 3(f); (b) ΔE ¼ 0.21 meV,
P ¼ 42 mW, d ¼ 60 μm; (c) ΔE ¼ 0.35 meV, P ¼ 90 mW,
d ¼ 40 μm; (d) ΔE ¼ 0.20 meV, P ¼ 103 mW, d ¼ 40 μm.
The fluctuations due to phase noise in the experimental setup
are estimated on the order of �0.03π.
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Moreover, exploiting the polarization degree of freedom of
polaritons, formation of spin domains [23], and half soliton
trains [37–39] have been predicted. Finally, from a more
general perspective, as the response of a quantum fluid to a
phase perturbation is quantitatively related to its superfluid
fraction [20,40,41], our experiment opens the way to the
experimental measurement of this quantity, crucial in the
theory of driven dissipative quantum fluids [42].
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