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We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an
antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives
a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden
by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon
edge states in a finite geometry.

DOI: 10.1103/PhysRevLett.117.217203

Understanding spin transport in nanostructures is a long-
standing problem in the field of spintronics [1–3]. The
discovery of the spin Hall effect [4–10] has been extremely
important as it has led to many important developments in
spintronics [11], such as the quantum spin Hall effect
[12,13], the spin-orbit torque [14–16], and the spin Seebeck
effect [17–19]. In the instrinsic spin Hall effect, the time
reversal symmetry prohibits the transverse charge current
but allows the transverse spin current originating from the
nontrivial Berry curvature of electron bands [7,8]. The
quantization of the intrinsic spin Hall effect can be
characterized by the topological Chern number and is
accompanied by the existence of topologically protected
edges in the finite geometry [20]. On the other hand the
quantum spin Hall effect can be characterized by the Z2
topological invariant [12,13].
The thermal Hall effect carried by magnons has been

experimentally observed in collinear ferromagnets such as
Lu2V2O7, Ho2V2O7, and In2Mn2O7 with pyrochlore struc-
ture [21,22]. It has been understood that the Dzyaloshinskii-
Moriya interaction (DMI) leads to the Berry curvature of
magnon bands and to the transverse with respect to the
external temperature gradient energy current [23–26]. The
same effect has also been observed in kagome ferromagnet
Cuð1 − 3; bdcÞ [27]. The existence of magnon edge states
and tunable topology of magnon bands has been discussed
theoretically [24,25,28–31]. The spin Nernst effect (SNE)
has been theoretically studied in Ref. [32] for a kagome
lattice ferromagnet. Topological properties of honeycomb
lattice ferromagnet were addressed in Refs. [33–35].
It has been recently realized that antiferromagnets are

promising materials for spintronics applications [36]. In
Refs. [37,38] the spin Seebeck effect has been studied in
antiferromagnets. In Ref. [39] it has been shown that the
Berry curvature can result in nonzero thermal Hall effect
carried by magnons in magnets with dipolar interaction and
in antiferromagnets. However, SNE in antiferromagnets has
not been addressed as all of the studies of anomalous
magnon-mediated spin transport in magnetic materials have
so far been done in ferromagnetic systems.

In this Letter, we study SNE in antiferromagnets with
Néel order.We first derive a general operator that has a well-
defined current in a general antiferromagnet. We then
develop a linear response theory for such a current using
the Luttinger approach of the gravitational scalar potential
[40,41]. It is shown that the response is driven by a modified
Berry curvature of magnon bands. We then apply our
findings to antiferromagnets with Néel order where a
well-defined current corresponds to the spin density.
Various realizations of antiferromagnets with honeycomb
arrangement of magnetic atoms have been suggested
recently [42–46]. We consider single- and bilayer honey-
comb antiferromagnets with antiferromagnetic interlayer
coupling where the nearest neighbor exchange interactions
and the second nearest neighbor DMI are present (see
Fig. 1). We show that both models possess the magnon
edge states in the finite geometry and discuss their role for
SNE. For a single layer, we observe an interplay between the
Berry curvature due to the lattice topology andDMI and find
that theBerry curvature is not of themonopole type, contrary
to a ferromagnet on a honeycomb lattice [34,35]. We also
find that SNE can be present in antiferromagnets that are
invariant under (i) a global time reversal symmetry (e.g.,
Fig. 1, right) or under (ii) a combined operation of time
reversal and inversion symmetries (e.g., Fig. 1, left) which
prohibits the thermal Hall response derived in Ref. [39].
Current in antiferromagnet.—Here we assume a general

model of antiferromagnet insulator with a magnetic unit
cell having N sites. The Hamiltonian of such a system is of
Heisenberg type with exchange interactions, DMI, anisot-
ropies, and others. Assuming that we know the order of the
system, we study the magnon excitations around that order.
The Holstein-Primakoff transformation from spins to boson
operators can be employed to study the magnons (see
Ref. [47], for example). In this way, the boson operators
νjðrÞ and ν†jðrÞ, with j ∈ ð1; NÞ, correspond to the jth
element of the magnetic unit cell. The operators satisfy
commutation relationship ½νiðrÞ; ν†jðr0Þ� ¼ δijδrr0 . We then
proceed to write a general form of a Hamiltonian describing
the magnons,
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H0 ¼
1

2

Z
drΨ†ðrÞĤΨðrÞ: ð1Þ

Since this Hamiltonian describes magnons of an antiferro-
magnet, it will necessary contain pairing terms of boson
operators. One must then extend the space of the
Hamiltonian, such that the spinor ΨðrÞ is written
as ΨðrÞ ¼ ½ν1ðrÞ;…; νNðrÞ; ν†1ðrÞ;…; ν†NðrÞ�T .
The Hamiltonian in k space can be diagonalized with a

help of a paraunitry matrix Tk, such that

T†
kĤkTk ¼ εk ¼

�
Ek 0

0 E−k

�
; ð2Þ

where Ek is a N × N diagonal matrix of eigenvalues.
Paraunitarity of the matrix Tk means that it has to satisfy a
condition T†

kσ3Tk ¼ σ3.
We will be interested in responses of the system to

external temperature gradient. To treat the temperature
gradient we adopt the Luttinger method [40] and add
gravitational potentials to the Hamiltonian as

H ¼ 1

2

Z
dr ~Ψ†ðrÞĤ ~ΨðrÞ; ð3Þ

where ~ΨðrÞ ¼ ½1þ ðr∇χ=2Þ�ΨðrÞ with ∇χ being the tem-
perature gradient with χðrÞ ¼ −TðrÞ=T.
Let us now introduce an arbitrary operator Ô acting in

the Hilbert space of the studied system. The density of such
an operator isOðrÞ ¼ 1

2
Ψ†ðrÞÔΨðrÞ. Time evolution of the

density is derived through a commutator with total
Hamiltonian as, see Supplemental Material [48] for details,
follows:

∂OðrÞ
∂t ¼ i½H;OðrÞ�

¼ −
1

2
∇ ~Ψ†ðrÞðv̂σ3Ôþ Ôσ3v̂Þ ~ΨðrÞ

− i
1

2
~Ψ†ðrÞðÔσ3Ĥ − Ĥσ3ÔÞ ~ΨðrÞ; ð4Þ

where v̂ ¼ i½Ĥ; r� is the velocity operator, and σ3 is the
third Pauli matrix operating in the extended space of the
Hamiltonian (1). In deriving we assumed that the operator
Ô commutes with the position operator. From Eq. (4) we
observe that for the current of an operator Ô to be well
defined, a

Ôσ3Ĥ − Ĥσ3Ô ¼ 0 ð5Þ

condition must be satisfied by the operator Ô. Otherwise
the quantity associated with the density OðrÞ will not be
conserved in our system. Let us assumewe have found such
an operator that satisfies the condition (5), the current
associated with this operator is then defined as

jOðrÞ ¼ ~Ψ†ðrÞÔσ3v̂ ~ΨðrÞ: ð6Þ

Let us now calculate the response of the Ô-operator
current to the temperature gradient. We will be working
with the macroscopic currents, defined as JO ¼
ð1=VÞ R drjOðrÞ, where V is the volume of the system.
Note that the current consists of an unperturbed part
J½0�O ¼ ð1=VÞ R drΨ†ðrÞÔσ3vΨðrÞ and a perturbed by a
temperature gradient J½1�O ¼ ð1=2VÞ R drΨ†ðrÞÔσ3ðrβv̂þ
v̂rβÞΨðrÞ∇βχ part. Both of them must be used to calculate
linear response to the temperature gradient. The total
current is

JO ¼ hJ½0�O ine þ hJ½1�O ieq: ð7Þ

The first term is evaluated with respect to nonequilibrium
states and can be conveniently captured by the Kubo linear
response formalism. Second current corresponds to orbital
magnetization in the system and it is evaluated with respect
to equilibrium state. To calculate the latter, we adopt the
approach of Smrcka and Streda [49] and adopt derivations
presented in Ref. [39]. It is important to note that the
velocity written in the diagonal basis as ~vαk ¼ T†

kv̂αTk ¼
∂αεk þAαkσ3εk − εkσ3Aαk, is conveniently separated
into diagonal and nondiagonal parts, where Aαk ¼
T†
kσ3∂αTk. The latter is responsible for the transverse

responses of the system. The details of the calculations
for the current are given in Ref. [48]. Overall, the total
current is derived to be
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FIG. 1. Left: Magnon spectrum of a single layer antiferromag-
net with DMI D ¼ 0.1J (black arrows correspond to ν sign
convention of DMI), with schematics of the lattice and order in z
direction in the bottom. Right: Magnon spectrum of antiferro-
magnet on a bilayer honeycomb lattice. Parameters are chosen to
be J0 ¼ J and D ¼ 0.1J. In both cases the distribution of the
Berry curvature over the Brillouin zone is plotted by the color
distribution on top of the spectrum for one of the degenerate
subbands.
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½JO�α ¼
1

V

X
kn

½Ω̄½O�
αβ ðkÞ�nnc1½ðσ3εkÞnn�∇βχ; ð8Þ

where c1ðxÞ ¼
R
x
0 dηη½dgðηÞ=dη�, and gðηÞ ¼ ðeη=T − 1Þ−1

is the Bose-Einstein distribution function. We defined an
O-Berry curvature,

Ω̄½O�
αβ ðkÞ ¼ iŌ∂αT

†
kσ3∂βTk − ðα ↔ βÞ; ð9Þ

a Berry curvature modified with an operator Ō ¼
σ3T

†
kÔTkσ3. Because of the commutation relations (5),

matrix Ō is diagonal in the band index. We show there is a
sum rule

P
n½Ω̄½O�

αβ ðkÞ�nn ¼ 0 the O-Berry curvature sat-
isfies. Expressions (8) and (9) together with (5) and (6) are
the main results of this Letter.
Single layer honeycomb antiferromagnet.—We now

apply our results to specific model of an antiferromagnet
on honeycomb lattice. The lattice of the system is shown in
Fig. 1. We define an exchange Hamiltonian

H ¼ J
X
hiji

SiSj þD
X
⟪ij⟫

νij½Si × Sj�z: ð10Þ

Here, J > 0 is the nearest neighbor spin exchange, D is the
strength of the second-nearest neighbor spin DMI, and νij
is a sign convention defined in Fig. 1.
Let us assume there is a Néel order in the direction

perpendicular to the lattice plane, z direction. To study
magnons of the model we perform a Holstein-Primakoff
transformation from spins to boson operators, SAþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − a†a

p
a, SAz ¼ S − a†a, and SBþ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − b†b

p
b†,

SBz ¼ −Sþ b†b, and assume large S limit. As shown in the
Supplemental Material [48], the Hamiltonian describing
noninteracting magnons splits in to two blocks. The first
block, call it I, is described byΨI ¼ ðak; b†−kÞT spinor. The
Fourier image of the Hamiltonian of the first block is

HIk ¼ JS

�
3þ Δk −γk
−γ−k 3 − Δk

�
: ð11Þ

where we defined γk ¼ 2eiðkx=2
ffiffi
3

p Þ cosðky=2Þ þ e−iðkx=
ffiffi
3

p Þ,
and Δk ¼ 2ðD=JÞ½sinðkyÞ − 2 sinðky=2Þ cosð

ffiffiffi
3

p
kx=2Þ� is

the DMI, and we note Δk ¼ −Δ−k. Hamiltonian of the
second block described by ΨII ¼ ðbk; a†−kÞT spinor is
obtained by γk → γ−k in Eq. (11).
Let us define operator Ô acting in full, Ψk ¼

ðak; bk; a†−k; b†−kÞT, space as

Ô ¼
�
τ̂3 0

0 τ̂3

�
; ð12Þ

where τ̂3 is the third 2 × 2 Pauli matrix. The density of this
operator written in real space, OðrÞ ¼ 1

2
Ψ†ðrÞÔΨðrÞ ¼

a†ðrÞaðrÞ − b†ðrÞbðrÞ, is the spin density. It can be shown

that such an operator satisfies condition (5); thus, the spin
density current associated with Ô is well defined. Let us
now calculate the spin density current as a response to the
temperature gradient. Expression for the response is given
by Eq. (8); hence, we need to find eigenvalues and calculate
the O-Berry curvature.
The spectrum of magnons for both blocks of the

Hamiltonian is obtained to be

Ek ¼ JSðΔk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − jγkj2

q
Þ: ð13Þ

Paraunitary matrix TIk that diagonalizes the Hamiltonian is
readily constructed to be

TIk ¼
�
coshðξk=2Þeiχk sinhðξk=2Þ
sinhðξk=2Þ coshðξk=2Þe−iχk

�
; ð14Þ

where sinhðξkÞ ¼ jγkj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − jγkj2

p
, coshðξkÞ ¼ 3=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − jγkj2
p

, and γk ¼ jγkjeiχk . One can show that the II
block described by the ΨII ¼ ðbk; a†−kÞT spinor has the
paraunitary matrix TIIk obtained from the TIk by setting
χk → −χk, and, hence, has the same O-Berry curvature
(see Ref. [48] for more details). The spin density current
can then be written as

½JO�α ¼ −
1

V

X
k

2Ω½O�
αβ ðkÞ½c1ðEkÞ − c1ðE−kÞ�∇βχ; ð15Þ

with the diagonal elements of the O-Berry curvature written
as

Ω½O�
αβ ðkÞ ¼ −

3

2ð9 − jγkj2Þ3=2
× ½ð∂αReγkÞð∂βImγkÞ − ð∂βReγkÞð∂αImγkÞ�:

ð16Þ

We observe that the current vanishes if the DMI is zero in
the system, in which case Ek ¼ E−k. Note that the O-Berry
curvature is independent of the DMI.
Recalling the definition of χðrÞ, we define SNE con-

ductivity αsαβ as ½JO�α ¼ −αsαβ∇βTðrÞ, and plot its depend-
ence on the temperature; see Fig. 2. We now wish to extract
analytic results in the limit of small DMI, D < J. There are
two different symmetry points, namely, the Γ and K, K0
points in the Brillouin zone of magnons that the spin
current gets major contributions from. Close to the Γ ¼
ð0; 0Þ point the spectrum is ungapped and linear. We
expand all functions close to the Γ point to obtain a low
temperature T < JS dependence of the current. See the
Supplemental Material [48] for details.

½ðJOÞx�Γ ¼ 5ζð5Þ
9

ffiffiffi
3

p
πV

D
J

�
T
JS

�
4∇yTðrÞ; ð17Þ
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where an estimate of Riemann zeta function is ζð5Þ ≈ 1. At
the K ¼ ð0;−4π=3Þ and K0 ¼ ð0;þ4π=3Þ points, the
Berry curvature has an absolute value maximum. An
analytic estimate of the current contribution from these
points at small temperatures T < JS, is obtained
½ðJOÞx�K ¼ ð9 ffiffiffi

3
p

Λ2=8πVÞðD=JÞðJS=TÞ2e−ð3JS=TÞ∇yTðrÞ,
where we introduced a high limit cutoff Λ ∼ 1 for k, such
that

P
k ¼ ðΛ2=4πÞ. It is straightforward to show that

½ðJOÞx�Γ ≫ ½ðJOÞx�K for small temperatures. Both contri-
butions are of the same sign which always results in the
same sign of SNE for this model irrespective of the
temperature and the strength of the DMI.
The Chern number of the magnon band for the single

layer honeycomb antiferromagnet is zero (see Fig. 1). As a
result we do not observe any protected by the Chern
number edge states in the finite strip geometry with a
zigzag edge (see Fig. 3). Nevertheless, we observe an edge
state analogous to the zero energy edge state in the
fermionic model of graphene with a zigzag or bearded
edge. The edge state connects the K and K0 points, which
have Berry curvatures different in sign. Such edge states do
not contribute to the SNE in the finite geometry of a single
layer honeycomb antiferromagnet.
Double layer honeycomb antiferromagnet.—In another

model we consider an antiferromagnet on a double layer
honeycomb lattice (see Fig. 1). We again assume a nearest
neighbor antiferromagnetic exchange interaction, second-
nearest neighbor DMI, same in both layers, and antiferro-
magnetic interaction between the layers denoted by J0. With

the Néel order being in the z direction, we follow the same
steps as in the previous example and get a spectrum of spin
waves

E2
k�=ðSJÞ2 ¼ λ2 − jγkj2 þ Δ2

k − t2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

kðλ2 − jγkj2Þ þ t2jγkj2
q

; ð18Þ
here λ ¼ 3þ t, where t ¼ J0=J. The spectrum and the
Berry curvature distribution is shown in Fig. 1. There we
observe that the Berry curvature is of the monopole type
located at the M points in the Brillouin zone in contrast to
the magnon Haldane-Kane-Mele model [35].
For this model the Chern numbers of the upper and lower

bands are þ1 and −1, respectively, where the topological
charge is 1=3 perM point. The whole band now contributes
in an additive way to SNE, which results in a much larger
effect. Numerical calculations of the magnon SNE are
shown in Fig. 2. To uncover the role of the edge states, we
calculate the energy spectrum of a double-layer strip with a
zigzag edge; see Fig. 3. The high-energy edge states here
are due to DMI, in contrast to the single-layer model. These
edge states are chiral and are protected by the finite Chern
number due to the nontrivial topology of the bulk magnons.
These edge states are also expected to contribute to SNE
conductivity in the finite geometry [24]. The low-energy
edge states are of the same nature as in a single layer
honeycomb antiferromagnet and are not expected to con-
tribute to SNE.
Absence of the thermal Hall effect.—The thermal

Hall coefficient is given by an expression κxy ¼
−ð1=2TÞPk

P
2N
n¼1 ½ΩxyðkÞ�nnc2½ðσ3εkÞnn�, where we

defined c2ðxÞ ¼
R
x
0 dηη

2ðdg=dηÞ. We set Ô ¼ σ3 in expres-
sion (9) to obtain the Berry curvature of the energy bands
ΩxyðkÞ ¼ iσ3∂xT

†
kσ3∂yTk − ðx ↔ yÞ. For an antiferro-

magnet on a single layer honeycomb lattice, the energy
states are degenerate, corresponding to the two blocks, I
and II, with opposite sign Berry curvatures. The two blocks
correspond to two sublattices related either by inversion I
or by time-reversal T transformations. On the other hand,
the double layer antiferromagnet in Fig. 1 is invariant under
the global time reversal symmetry if treated as a 2D system
since T followed by interchange of honeycomb layers is a
symmetry. Thus, the thermal Hall response considered in
Ref. [39] vanishes for both models in Fig. 1.
Conclusions.—In this Letter we theoretically studied

magnon mediated SNE in antiferromagnets. We gave a
general condition for a current to be a well-defined quantity
in an antiferromagnet, and then derived its response to an
external temperature gradient. We showed that the trans-
verse response of this current is defined by a modified
Berry curvature. In antiferromagnets with Néel order, SNE
can be driven by the Dzyaloshinskii-Moriya interaction and
SNE is present even in systems with T I or global T
symmetries. In both cases the thermal Hall effect is zero
while SNE should change sign with the reversal of the Néel

FIG. 2. Spin Nernst conductivity αsxy, defined after expression
(15). Left: a single layer honeycomb antiferromagnet. Right:
double layer honeycomb antiferromagnet. Plots are given for
different values of DMI.

FIG. 3. Magnon spectrum of 80 atoms wide strip of honeycomb
lattice antiferromagnet. Strip is in the x direction, while the y
direction is assumed infinite. The edges of the system are of
the zigzag type. Left: Single layer with DMI, D ¼ 0.2J. Right:
Double layer. Protected magnon edge states occur in the high
energy band gap. Parameters are chosen to be J0 ¼ 1.3J
and D ¼ 0.2J.
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vector in the former case but not in the latter case. We also
identified the protected edge states with counterpropagat-
ing magnon modes, carrying spin but no energy.

We gratefully acknowledge useful discussions with K.
Belashchenko. This work was supported by the DOE Early
Career Award No. DE-SC0014189.

Note added—Recently, we became aware of a Letter [50]
that discusses SNE in antiferromagnets. We believe the two
Letters compliment each other.
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