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A heavy-fermion superconductor UPt3 is a unique spin-triplet superconductor with multiple super-
conducting phases. Here, we provide the first report on a first-principles analysis of the microscopic
superconducting gap structure. We find that the promising gap structure is an unprecedented E2u state,
which is completely different from the previous phenomenological E2u models. Our obtained E2u state has
in-plane twofold vertical line nodes on small Fermi surfaces and point nodes with linear dispersion on a
large Fermi surface. These peculiar features cannot be explained in the conventional spin 1=2
representation, but is described by the group-theoretical representation of the Cooper pairs in the total
angular momentum j ¼ 5=2 space. Our findings shed new light on the long-standing problems in the
superconductivity of UPt3.
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Identifying the pairing state and the pairing mechanism
is one of the most interesting and important issues in the
field of unconventional superconductivity. In particular,
spin-triplet pairing states attract much attention, since there
are few examples except for the superfluid 3He. In the
strongly correlated electron systems, the heavy-fermion
superconductor UPt3 is one of the rare candidates for spin-
triplet superconductors [1,2]. The most impressive feature
of this material is the multiple superconducting phase
diagram. At zero magnetic field, there appears the super-
conducting double transition into the A phase at the upper
critical temperature Tþ

c ∼ 540 mK, and then into the B
phase at the lower T−

c ∼ 490 mK [3]. Moreover, the C
phase appears at high field and low temperature in the
H − T phase diagram [4,5]. In each phase, nodal quasi-
particle excitations have been observed [6–9], and also the
time-reversal symmetry breaking has been reported in the B
phase [10–12]. In spite of these prominent features, the
superconducting gap structure still remains to be solved.
Many scenarios have been proposed based on the phe-
nomenological approach so far [13–16]. Among them, the
most promising gap symmetry has been widely believed to
be E2u models [1,17–19]. However, recent measurement of
the field-angle resolved thermal transport has detected in-
plane twofold oscillations in the C phase [20]. This result is
inconsistent with the proposed E2u models, because in the
group-theoretical argument, it is believed that the E2u
models do not have such in-plane twofold symmetry.
Such twofold symmetry seems to be rather compatible
with the E1u models proposed in Refs. [21–23]. This is also
supported by the following observations. A small residual
thermal conductivity [24] suggests the presence of point
nodes with linear dispersion in the E1u models. The
Josephson effect [25] with an s-wave superconductor is
compatible with E1u planar states. Thus, recently, the E1u

models [21–23] have been revisited. This strongly pro-
moted the field-angle resolved specific heat measurement.
However, the complimentary measurements have not
detected any signature of in-plane symmetry breaking in
any phases [26]. Although this seems to contradict the
result in the thermal conductivity, it is expected to be
explained by considering the multiband nature of UPt3. If
the twofold vertical line nodes are located on the Fermi
surface (FS) with a light band mass, then the twofold
oscillations will be more remarkable in the thermal con-
ductivity than the specific heat measurement. In order to
clarify how reasonable such a plausible story is, the
microscopic analysis of superconductivity including the
electronic structure in UPt3 is worth consideration [27–29].
In this regard, recent progress on the first-principles
theoretical approach allows us to investigate the gap
structure microscopically even in the complicated band
structure like the heavy-fermion compounds [30–32].
In this Letter, we provide the first report on a micro-

scopic theory of superconductivity in UPt3 based on the
first-principles approach. Generally, it is difficult to exactly
evaluate the effect of strong electron correlation in
f-electron materials. Instead, we study probable candidates
of gap functions based on the Fermi-liquid picture as a first
step to understanding unconventional superconductivity in
UPt3 [33]. We find that the promising gap structure is an
unprecedented E2u pairing state, which is supported by the
j ¼ 5=2 representation of Cooper pairs, instead of conven-
tional pseudospin representations. Its nodal structure is
completely different on each FS: the point nodes with linear
dispersion in the large hole FS, and the twofold vertical
line nodes in small electron FSs. These features are not
expected in the well-known phenomenological E2u model.
The low-energy nodal excitations are similar to those in the
E1u model rather than the previous E2u model. The peculiar
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properties can give a comprehensive explanation for the
above-mentioned experimental observations, including the
seemingly inconsistent result between the thermal conduc-
tivity and specific-heat measurement. Thus, the exotic E2u
gap structure is the most promising pairing state in the
superconductivity of UPt3.
Fermi surface and model Hamiltonian.—In studying the

superconductivity of UPt3, the itinerant 5f model is
considered to be a good starting point, since the Fermi
surface in the first-principles calculations has been partially
supported by the de Haas–van Alphen measurements
[35,36]. Following the previous studies [30,31], we here
figure out the magnetic fluctuations in UPt3, based on the
first-principles theoretical approach.
First of all, using the WIEN2k package [37], we calculate

the electronic structure of UPt3, and then construct an
effective tight-binding model [38] in the Wannier bases
using the WIEN2WANNIER interface [40] and the WANNIER90

code [41]. Here, we employ the space group P63=mmc,
which holds the in-plane sixfold rotational symmetry. Note
that the so-called symmetry-breaking term is not included
[42,43]. Our model Hamiltonian is composed of 120
Wannier bases, containing Uð5fÞ, Uð6dÞ, Ptð5dÞ, Ptð6sÞ
orbitals and spin degrees of freedom. These bases are
transformed into the bases of the total angular momentum
j. In this case, due to the moderate spin-orbit coupling, the
orbital components of the bands crossing the Fermi level are
dominated by the j ¼ 5=2 multiplet of Uð5fÞ orbitals, and
the j ¼ 7=2 multiplet is located at much higher position.
The obtained FS is illustrated in Fig. 1. Colors on the FS,

red, green, and blue, correspond to each weight of

jz ¼ �5=2, �3=2, and �1=2 components, respectively.
The FS topology is well consistent with the previous
studies [2,44,45]. The FSs of Figs. 1(b) and 1(c) have a
large contribution to the density of states (DOS) at the
Fermi level. Here, we realize that each FS possesses
relatively separated orbital components, especially, the
small FSs in Figs. 1(d) and 1(e) roughly involve only
the jz ¼ �3=2 component. This characteristic feature is the
key to the emergence of the unprecedented E2u gap
structure as discuss below.
Magnetic fluctuations.—Next, we study the magnetic

fluctuations in the model Hamiltonian, including the on-site
Hubbard-type repulsions, U, U0, J, J0 between 5f elec-
trons, whereU is the intraorbital Coulomb repulsion,U0 the
interorbital one, J the Hund’s coupling, and J0 the pair
hopping interaction. Figure 2 depicts the wave-vector
dependence of the magnetic fluctuations [38]. We find
that the most dominant fluctuations are located at
Q¼ð0;0;1Þ and (1,0,0). The Q vector corresponds to the
antiparallel alignment of the magnetic moment of two
U atoms in the unit cell. This is well consistent with the
observed dispersive magnetic excitations by inelastic neu-
tron scattering measurements [46,47]. On the other hand,
the presence of the subdominant peaks at Q ¼ ð0; 0; 1=2Þ
and ð1; 0; 1=2Þ may correspond to the fragile magnetic
phase transition at TN ≃ 5 K [48–50]. Indeed, this sub-
dominant fluctuation is much enhanced within random
phase approximation. However, it needs further investiga-
tions along with a problem of magnetic anisotropy. The
magnetic anisotropy of the uniform susceptibility is slightly
Ising type, χ∥ð0Þ≳ χ⊥ð0Þ. Although this is the opposite to
the experimental observation, we need to consider the large
contribution from the localized f-electron part due to the
strong electron correlations in the heavy fermion systems.
This is a challenging issue in the future, and beyond the
scope of this Letter.
Superconductivity.—Now, let us proceed to a study of

the superconducting gap structure. Possible candidates can

FIG. 2. Magnetic structure of the bare susceptibilities. (a)–(c)
show the magnetic susceptibilities parallel to the c axis,
χ∥ðka; kb; kcÞ, in kc ¼ 0, 1=2, and 1 plane. Here, ka, kb, and
kc are measured in units of the reciprocal lattice vectors. (d) shows
the magnetic susceptibility perpendicular to the c axis,
χ⊥ðka; kb; kcÞ, in the kc ¼ 1 plane. The difference between (c)
and (d) corresponds to the magnetic anisotropy.

FIG. 1. Orbital-resolved Fermi surfaces in our tight-binding
model H0, obtained by the first-principles calculations. The
colors correspond to the weight of the jz component in the total
angular momentum j ¼ 5=2 space. In the text, (a)–(e) are referred
to as bands 1–5, respectively.
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be obtained by calculating the linearized gap equation at
around Tc.

λΔlmðkÞ ¼
X
k0

X
l0l00m0m00

Vll0;m0mðk − k0Þ

× Gl0l00 ðk0ÞGm0m00 ð−k0ÞΔl00m00 ðk0Þ; ð1Þ
where ΔlmðkÞ and GlmðkÞ are the j-based gap functions
and one-particle Green’s functions, and also l and m
denote jz components of each U atom [38]. The maximum
eigenvalue λ equals to 1 at Tc. Here, the pairing interaction
Vll0;m0mðk − k0Þ is estimated within the second-order per-
turbation theory [51]. It leads to an asymptotically exact
weak-coupling solution. In this case, as shown in Fig. 3,
we obtain two types of predominant spin-triplet pairing
states with two dimensional representation E1u and E2u.
This means that the present microscopic theory supports the
phenomenological candidates. In our calculations, the E2u
state is more dominant than the E1u state over a wide
parameter range. From these results, we conclude that the
most promising candidate for the pairing state of UPt3 is the
E2u odd-parity state.
Next, let us elucidate the detailed microscopic structure

of these pairing states. In Fig. 4, we show the super-
conducting gap amplitude [38] on each FS of bands 1, 3,
and 4. Deep blue corresponds to the gap nodes and/or
minima. Slight fluctuation of colors is attributed to the
exemplification of the Blount’s theorem [52] and some
numerical errors. Strictly speaking, the Blount’s theorem
says that the symmetry-protected line nodes cannot exist in
odd-parity representation except for a rare case as discussed
later. Therefore, when we do not single out a specific basis
function as in the present calculations, the line nodes appear
just as “pseudo” line nodes, where the gap amplitude is not
exact zero. Hereafter, we call the “pseudo” line nodes by
the line nodes.
It is instructive to start with the E1u state. In such a two-

dimensional representation, there are two kinds of basis
functions. Illustrated in Figs. 4(a)–4(c) is one possible gap

structure in the E1u state. Another one is not shown here.
Roughly speaking, the nodal structure on the FS at around
the Γ point in Fig. 4(b) is the f-wave pairing state having
one vertical line node and two horizontal line nodes at
kz ≠ 0 plane. This nodal structure is identical to the E1u
model, which has been proposed based on the observations
in the field-angle resolved thermal conductivity. Since the
relevant FS has a large DOS, the in-plane twofold oscil-
lation should be detected also in any experimental obser-
vations. However, this is incompatible with the observation
in the field-angle resolved specific heat measurement [26].
Furthermore, let us consider the gap structure in the E2u

state in Figs. 4(d)–4(f). Surprisingly, we find that the nodal
feature is completely different on each FS: horizontal nodes
in Fig. 4(d), point nodes at the top of FS in Fig. 4(e), and
in-plane twofold vertical line nodes in Fig. 4(f). These
nodal structures are completely different from those of the
previous phenomenological E2u models despite the same
irreducible representation.
Generally, the superconducting order parameter is clas-

sified by irreducible representations of the point group
symmetry, since the linearized gap equation is separable for
each representation. For strong SOC, symmetry operations
act on all the spin, orbital, and wave-vector degrees of
freedom. If we as usual consider a spin one-half Fermion
system without any other internal degrees of freedom, then
following Refs. [2] and [53], we can see that the only
possible type of p-wave gap function in E2u representation
is (d̂xkx − d̂yky, −d̂xky − d̂ykx) in the d-vector notation.
This minimal gap function has only a point node at the top
of FS. Even if considering its higher harmonics, there does

FIG. 3. Superconducting phase diagram for the intraorbital on-
site repulsion U and Hund’s coupling J. The unit of energy is eV
[51]. Here, we set the interorbital interaction U0 ¼ U and the pair
hopping J0 ¼ J. E2u state is predominant over the wide range.
Even if assuming SU(2) condition, U ¼ U0 þ 2J, the tendency is
almost unchanged.

FIG. 4. Superconducting gap amplitude,
P

n0¼�njΔ̄nn0 ðkÞj2, on
the FSs of band 1, band 3, and band 4 [38], where Δ̄nn0 ðkÞ ¼P

lmu
�
lnðkÞΔlmu�mn0 ð−kÞ with the unitary matrix ulnðkÞ diago-

nalizingH0. n0 ¼ �nmeans a sum of the Kramers degeneracy for
band n. (a)–(c) correspond to the E1u state, and (d)–(f) the E2u
state. Line and point nodes colored by orange are pointed by
arrows.
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not appear any twofold vertical line nodes. Therefore, it has
been widely believed that in the D6h point group, twofold
vertical line nodes are allowed only in E1u representation,
and generally forbidden in E2u representation [53]. In this
regard, our E2u gap structure seems to be very curious.
However, in our case, we need to consider the Cooper pairs

in the effective j ¼ 5=2 space [54–56], instead of conven-
tional pseudospin 1=2. Such an extension can be performed
with the help of the projection operator method as in the
case of spin 1=2. Thereby, we find that for the minimal
p-wave pairing, one of two bases in the E2u representation
can be described as follows,

Δ1ðkÞ ¼

jz ¼ 5=2 3=2 1=2 −1=2 −3=2 −5=2
0
BBBBBBBBBB@

c1ðkx − ikyÞ c2kz c3kx þ c4iky c5kz c6ðkx þ ikyÞ 0

c2kz c7kx þ c8iky c9kz c10ðkx þ ikyÞ 0 c6ð−kx þ ikyÞ
c3kx þ c4iky c9kz c11ðkx þ ikyÞ 0 c10ð−kx þ ikyÞ c5kz

c5kz c10ðkx þ ikyÞ 0 c11ð−kx þ ikyÞ c9kz −c3kx þ c4iky
c6ðkx þ ikyÞ 0 c10ð−kx þ ikyÞ c9kz −c7kx þ c8iky c2kz

0 c6ð−kx þ ikyÞ c5kz −c3kx þ c4iky c2kz c1ð−kx − ikyÞ

1
CCCCCCCCCCCCA

;

where ciði ¼ 1–11Þ are material-dependent parameters.
From the expressions of the second and fifth diagonal
elements, we can verify that twofold vertical line nodes
appear in the jz ¼ �3=2 subspace. Similarly, we find that
the gap functions in the jz ¼ �5=2 or�1=2 subspace yield
only point nodes with the linear dispersion along the c axis,
and the twofold vertical line nodes are forbidden. Anoma-
lous twofold vertical line nodes in the E2u representation
emerge only in the jz ¼ �3=2 space. In UPt3, the FSs in
Figs. 1(d) and 1(f) involve plenty of the jz ¼ �3=2
component. Thus, it is natural that twofold vertical line
nodes emerge in these FSs even in E2u gap symmetry.
Moreover, it should be noted that these FSs have a light
band mass. In this case, it can be expected that the in-plane
twofold oscillation in the field-angle resolved measure-
ments is more prominent in the thermal conductivity than in
the specific heat measurements. This can provide an
explanation for the seemingly inconsistent observations
between these measurements. In addition, since the FS
around Γ in Fig. 1(c) is almost composed of jz ¼ �5=2, we
recognize that the point nodes observed in Fig. 4(e) have
linear dispersion, which can be consistent with the small
residual thermal conductivity [24].
In order to understand more about this unprecedented

E2u gap structure, let us dissect the superconducting gap
structure in Fig. 4(f). Although the p-wave line nodes on
the kx ¼ 0 plane are remarkable as mentioned above, we
can realize additional gap minima on the ky ¼ 0 and kz ¼ 0
planes. This implies a mixing of the f-wave component
with the form of kxkykzd̂z, which is indeed allowed in the
group-theoretical arguments. Therefore, roughly speaking,
the gap structure in Fig. 4(f) can be described as a linear
combination between the p-wave kxd̂x and f-wave
kxkykzd̂z in the d-vector representation in the jz ¼ �3=2

space. Following Ref. [1], it will be natural that this
pþ f-wave gap function shows vertical line nodes in
the A and C phase, and breaks the time-reversal symmetry
in the B phase. Furthermore, under the applied field parallel
to the c axis, the Pauli-limiting behavior will be expected in
the upper critical field. Although such suppression has been
observed experimentally, we need further investigations,
considering the magnetic anisotropy.
Finally, let us comment on the horizontal line nodes at

kz ¼ �1 in Fig. 4(d). As mentioned above, in an ordinary
case, there are only point nodes in the E2u representation.
However, in the nonsymmorphic system like UPt3, there
exists additional C2 screw symmetry, which protects the
horizontal line nodes. The symmetry-protected line nodes
are known as one of the exceptions to the Blount’s theorem
[57]. In the actual situation, however, the interesting line
nodes are simply lifted, or slightly shifted from the
kz ¼ �1 plane, due to the presence of a weak symmetry-
breaking term [43,50]. This is a challenge for the future.
Conclusion.—Based on the advanced first-principles

theoretical approach, we clarify the microscopic gap
structure in the heavy-fermion superconductor UPt3. We
find that the obtained antiferromagnetic fluctuations with
Q ¼ ð0; 0; 1Þ and (1,0,0), which are consistent with the
neutron scattering measurements, lead to the spin-triplet
pairing states with E1u and E2u representations in the D6h
space group. The obtained E1u gap structure is consistent
with the phenomenological f-wave pairing state. On the
other hand, the latter E2u state, having nodal structure
different for each band, is distinct from the well-known E2u
models. In particular, the in-plane twofold vertical line
nodes emerge on the small FS, which can consistently
explain the field-angle resolved measurements in both the
thermal conductivity and the specific heat. Such a peculiar
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feature cannot be explained in the conventional pseudospin
representation, but is described by the group-theoretical
representation of the Cooper pairs in the j ¼ 5=2 space.
Furthermore, the study of magnetic anisotropy and the
mixture of p wave and f wave with different d vectors [58]
can provide a clue to understanding the remaining prob-
lems of the Pauli limiting of the upper critical field
[17,26,59] and the anomalous behavior of the Knight shift
[60], and so on. These will be interesting issues in the
future, together with the understanding of the multiple
superconducting phases. Thus, our findings shed new light
on the long-standing problems in the superconductivity
of UPt3.
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