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The photovoltaic effect due to the adiabatic quantum phase in noncentrosymmetric Weyl semimetals is
studied. We particularly focus on the case in which an external ac electric field is applied. By considering
a generalized Weyl Hamiltonian with nonlinear terms, we show that the photocurrent is induced by
circularly, rather than linearly, polarized light. This photovoltaic current can be understood as an
emergent electromagnetic induction in momentum space; the Weyl node is a magnetic monopole in
momentum space, the circular motion of which induces the electric field. This result is distinct from
conventional photovoltaic effects, and the estimated photocurrent is ∼10−1–101 nA, which can be
detected experimentally.
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Introduction.—The nontrivial phase in quantum adia-
batic processes—Berry’s phase—is one of the fundamental
aspects of quantum mechanics. In a quantum system, the
presence of an energy gap often prohibits excitations to
higher-energy states, and confines electrons within a
Hilbert subspace composed of lower energy states. In
dynamical processes, the confinement sometimes gives
rise to an additional geometric phase that depends only
on the path, and not on the details of the dynamics.
Ever since its discovery [1], it has been revealed that

Berry’s phase leads to rich physics. Interestingly, such an
effect appears not only in mesoscopic systems, but also in
the macroscopic properties of bulk materials. In solid-state
materials, Berry’s phase of electrons leads to nontrivial
properties of solids, such as fractional pseudorotation
quantum numbers in Jahn-Teller systems [2–4] and topo-
logical Hall effects [5,6] arising from noncollinear magnetic
textures. A similar nontrivial structure of wave functions
shows up in the Brillouin zone, and contributes to nontrivial
electronic states [7,8] and transport phenomena [9–11].
Berry’s phase also affects the dynamics of nonequili-

brium systems. In periodically driven systems, it is known
that the adiabatic phase induces the quantized pumping of
charge [12–14]. In an insulator, the pumping of charge is
related to the time average of the emergent electric field
defined by [12]

eanð~kÞ ¼ ∂tAa
nð~kÞ − ∂aAt

nð~kÞ; ð1Þ

where

Aa
nð~kÞ ¼ −ihun~kðtÞj∂ajun~kðtÞi ð2Þ

is Berry’s connection in momentum space with ∂a ≡∂=∂ka (a ¼ x, y, z) and ∂t ≡ ∂=∂t. However, in solids,
the contribution from such an effect is usually zero or
vanishingly small, where the energy scale of the driving
field is much smaller than that of the bandwidth.
In this Letter, we show that the effect of the ~e field on the

charge pumping is enhanced in Weyl semimetals (WSMs),
and possibly leads to experimentally observable conse-
quences. Intuitively, this could be understood as an electro-
magnetic induction in momentum space. Suppose we have
a Weyl node at a nonzero kz and kx ¼ ky ¼ 0. In the
situation, a coupling of electrons to external electric fields
can induce a shift of the node in the kx-ky plane. In the
case of circularly polarized light, the incident light results
in a rotational motion of the Weyl node as schematically
shown in Fig. 1(a). As the Weyl nodes can be seen as the
“magnetic monopoles” of Berry’s connection in momen-
tum space, in analogy to the symmetric Maxwell’s equation
in real space, the circular motion of a Weyl node induces
the dc ~e field penetrating through the orbit. Since the ~e field
is related to the electric current as ~j ∝ ~e [12], the incident
light can induce a dc current along the z axis.
As is shown later, the photocurrent arises only with the

circularly polarized light, in contrast to the conventional
anomalous photocurrents [15] and those induced through
Berry’s curvature [10,11]. Also, it does not require a change
in the charge distribution; this is yet another feature distinct
from the photocurrents induced through Berry’s curvature
and those in WSMs with broken time-reversal symmetry
[16,17], in which a change in the charge distribution is
necessary to induce a photocurrent. We note that our
“intrinsic” photocurrent is sensitive to the direction of
the incident light, in contrast to the other photocurrents in
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WSMs. Recently, possible realizations of the WSM in
solids have been explored in various systems [18–34].
The phenomenon we propose here should give rise to an
observable photocurrent in the WSM that lacks spatial-
inversion symmetry, such as in TaAs [30–34].
Since the photocurrent induced by a change in the

electron distribution has been well studied [10,11,16,17],
in this Letter we focus on the contribution from the
adiabatic quantum phase. In the following, we first elabo-
rate on some general requirements for free fermion systems
to have a net ~e field. Based on this picture, we discuss a
potential enhancement of the ~e field in WSMs. For this
purpose, in the latter half, we particularly consider a
generalized Weyl Hamiltonian with nonlinear terms, which
couples to an external electric field by a symmetry allowed
coupling. In this model, we show that shining the circularly

polarized light induces an electric current parallel to ~kðiÞ,
the vector connecting the Γ point and the ith Weyl node.

~e field in periodically driven systems.—In a periodically
driven system, where the Hamiltonian HðfDigÞ is driven
by slowly varying parameters Di ¼ DiðtÞ ¼ Diðtþ TÞ
(i ¼ 1; 2;…; m), the average ~e field over a period reads

eanð~kÞ ¼ ∂a

Z
T

0

½−At
nð~kÞ�dt0 ð3Þ

¼
X
i≠j

i∂a

Z
S
dDi∧dDj∂Dj

hun~kðtÞj∂Di
jun~kðtÞi; ð4Þ

where the region S indicates a surface enclosed by the path
given by fDiðtÞg (0 ≤ t < T). This is an m − 1 dimen-
sional hypersurface, and the integral does not depend on the
choice of the surface. The integral in Eq. (3) is Berry’s
phase in an adiabatic process [1]. From Eq. (4), if m ¼ 1,
there is no net ~e field in periodically driven systems since
the area covered by the integral in Eq. (4) is zero.

For a fully filled electron band, the average ~e field over
one period of the cycle is given by

eanð~kÞ ¼ −∂a

Z
T

0

At
nð~kÞdt0; ð5Þ

and the sum over the Brillouin zone reads

ēan ¼ −
Z Y

b≠a
dkb

Z
T

0

At
nð~kÞdt0j

π

−π
: ð6Þ

Here, we set the lattice constant to unity. It has been pointed
out that, in insulators, the charge pumped during the adiabatic
process is proportional to Eq. (6) [12], and that the integrand
on the right-hand side of Eq. (6) gives a quantized value due
to the single valuedness of the wave function.
In an insulator, however, it is expected that ea induced

by an electromagnetic field generally remains zero since the
pumped current is a topologically protected quantity, and
the external field is perturbatively small. In a two-band
model, this can be seen from the fact that ēa is given by

ēa� ¼∓ 1

2

Z
d3k

Z
T

0

dt ~̂Rð~k; tÞ · ∂a
~̂Rð~k; tÞ × ∂t

~̂Rð~k; tÞ: ð7Þ

Here, n ¼ þ (−) denotes the conduction (valence) band,
~̂Rð~k; tÞ is the normalized vector of Rνð~k; tÞ (ν ¼ x, y, z),

and R̂νð~k; tÞ ¼ Rνð~k; tÞ=R with R ¼ j~Rð~k; tÞj. The
Hamiltonian is given by

Hð~k; tÞ ¼
X
ν

σνRνð~k; tÞ; ð8Þ

where σν (ν ¼ x, y, z) are Pauli matrices. The right-hand

side of Eq. (7) gives the number of times ~̂R wraps a unit

sphere upon mapping ðkμ; tÞ → S2 by ~Rð~k; tÞ. In an insu-
lator, since the energy scale of an external field is typically
much smaller than that of the electron bandwidth, we
naturally expect that this wrapping number becomes zero.
In a doped case, the contribution from doped carriers

gives a nonzero ean. In a slightly doped insulator, however,
the contribution remains very small since the surface of the
sphere covered in Eq. (7) remains very small.
Nonlinear Weyl Hamiltonian.—An exception to such

cases, in which charge doping leads to a large ean field, is a
WSM. In a WSM, the effective Hamiltonian at the node is
given by H ¼ 0. Hence, the Hamiltonian close to the node
is dominated by external fields. As a consequence, a large
ean field is expected by doping carriers to the node. To study
the ~e field in periodically driven systems, we consider a
dopedWeyl Hamiltonian with nonlinear terms and multiple
external fields, whose Hamiltonian is given by Eq. (8) with

Rxð~kÞ ¼ vkx þ gDy þ
α2
2
kxkz; ð9aÞ

Ryð~kÞ ¼ vky − gDx þ
α2
2
kykz; ð9bÞ

Rzð~kÞ ¼ vzkz þ
α1
2
ðk2x þ k2y − 2k2zÞ; ð9cÞ

E

e

ky

kx

kz(a) (b)
kx

kz

FIG. 1. (a) Schematic figure of the emergent electric field
induced by incident light. The red dot indicates the position of a
Weyl node in the presence of the incident light. The incident
electric field induces a rotational motion of the Weyl node. The
orbital motion of the Weyl node induces a dc emergent electric
field penetrating through the orbit (yellow lines), which is,
parallel to the propagation direction of the light. (b) Dispersion
relations of the Weyl Hamiltonian with quadratic terms;
v ¼ vz ¼ 1, α1 ¼ 0, and α2 ¼ −1.
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where the ka’s are wave numbers at the Weyl node. We here
assume that the z-axis connects two Weyl nodes related by
time-reversal or spatial-inversion symmetry operation; i.e.,
~kðiÞ is parallel to the z axis. In Eq. (9), the second terms in

Rxð~kÞ and Ryð~kÞ are the couplings with the electric field of
frequency ω and phase shift χ:

Dx ¼ D cosðωtÞ; ð10Þ

Dy ¼ D sinðωtþ χÞ: ð11Þ

The electric field is circularly polarized for χ ¼ 0 and π,
while it is linearly polarized for χ ¼ π=2 and 3π=2. These
couplings are allowed in general, if Weyl nodes are located
away from symmetric points. When Weyl nodes are close
to the Γ points, these terms appear from a coupling like

Hel ¼ ~gϵabcDaκbÔc; ð12Þ
where κb is the wave number from the Γ point, Ôα (α ¼ x,
y, z) is a set of operators that transform as vectors, and ϵabc
is the Levi-Civita symbol. The third [second] terms in

Rxð~kÞ and Ryð~kÞ [Rzð~kÞ] are quadratic in ka. These terms
break the C2 rotation about an axis in the xy plane; i.e.,þkz
and −kz become asymmetric as shown in Fig. 1(b). These
terms reflect the existence of the pair node. Since our
Hamiltonian includes the information about the presence of
the pair node, which always exists in a material, we believe
that our Hamiltonian in Eq. (9) is a generic model for Weyl
semimetals in solids.
We first consider the case of electron doping. To evaluate

the ~e field, we focus on the limit αi ≪ v=jμj, vz=jμj, where
μ is the chemical potential (μ > 0 and μ < 0 for electron
and hole doping, respectively). To calculate ēa, we expand
the ~e field up to second order in αi.
In the adiabatic regime, the electron filling is not

changed by applying electric fields; the electron distribu-
tion is fixed to the case of Dx ¼ Dy ¼ 0. To take into
account the change of the Fermi surface by αi, we expand
the dispersion relation around the Fermi surface for
α1;2 ¼ 0 along the radial direction. For the electron doped
case, the change in kF, Δk, can be calculated by solving

μ − εð~kð0ÞF Þ þ Δk∂kεð~kð0ÞF Þ ¼ 0; ð13Þ

where ~kð0ÞF is the Fermi surface for α1;2 ¼ 0. From the fact

that μ − εð~kFÞ ∼OðαiÞ, we expect Δk ∼OðαiÞ. Hence, in
general, we need to consider terms up to OðΔk2Þ to fully
take into account terms up to Oðα2i Þ. However, from
explicit calculation, we find that the Oðα2i Þ contribution
to Δk vanishes.
Within this approximation, we obtain the analytic form

of ēz for v, vz ≫ αikF. The second-order response in D, up
to Oðα2i Þ, gives a net emergent electric field for the node,
along the z axis:

ēzR;L ¼ ēzþR;L ¼ �π
4ðv2 − 2v2zÞα1 − 3vvzα2

30v5v3z
× α1ðμgDÞ2ω cosðχÞ: ð14Þ

Here, the þ and − signs are for Weyl (R) and anti-Weyl
nodes (L), respectively. Because of the phase factor cosðχÞ,
the ~e field shows a maximum for the circular light (χ ¼ 0,
π), while it vanishes for the linearly polarized light
(χ ¼ π=2, 3π=2). This is consistent with the general argu-
ment above, and indicates the absence of a dc ~e field when
we have only one time-dependent parameter.
For electron doping, the net emergent electric field

increases as a function of μ2. This indicates that the
contribution from electrons with energy ε decays like
~e ∼ ε−1, as the density of states is approximately propor-
tional to ε2. Therefore, when considering hole doping, we
need to appropriately take into account the contribution
from electron states in the UV limits. However, from the
argument above, ē naturally vanishes for the filled bands.
Therefore, we can evaluate the ~e field for the hole doped
case by subtracting the contribution from vacant states.
For the model in Eq. (9), the resultant ēzR;L becomes the
same with Eq. (14).
Finally, to give an estimate for the magnitude of the

current, we here estimate the coupling g from the coupling
of electron Wannier orbitals to the electric polarization
operator. Considering that the polarization is given by
∼qehjδrji, where qe is the elementary charge and δr is the
distance from the center from the Wannier orbital, we
estimate the coupling term to be of order g ∼ 10−29 Jm=V
[35]. Assuming v ∼ vz ∼ 10−29 Jm (this corresponds to
the Fermi velocity of ∼105 m=s), α1;2 ∼ 10−39 Jm2,
ω ∼ 1013 Hz, the electric permittivity ε ∼ 10−10 F=m, and
the light power of the incident light ∼105 W=m2, the
estimated strength of the current is about 10−1–101 nA in a
1 mm3 sample [36].
Models with multiple Weyl nodes.—In the WSM, there

always exist multiple Weyl nodes [37]. Applications of our
theory to multiple nodes are straightforward; the photo-
current is given by the sum of the contribution from
each node.
From the symmetry point of view, in solids, the presence

of Weyl nodes requires the breaking of either time-reversal
or spatial-inversion symmetry. In the case of WSMs with
broken time-reversal symmetry, and in the presence of
spatial-inversion symmetry, a Weyl node has an equivalent
companion anti-Weyl node. Since these two nodes are
related by spatial-inversion symmetry, when a Weyl node is
doped, there always exists an anti-Weyl node with exactly
the same doping. For the photocurrent, since the sign of the
induced current depends on the chirality, the effect of an
electric field always cancels out and the total ~e field
(electric current) vanishes. This is consistent with the
general argument that the photovoltaic effect in OðE2Þ
requires the breaking of spatial-inversion symmetry.
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In contrast, in the case of WSMs with broken spatial-
inversion symmetry, a Weyl (anti-Weyl) node has a
companion Weyl (anti-Weyl) node. Hence, there always
exist at least four nodes in the Brillouin zone (see Fig. 2)
[38]. In such models, the parameters in the Hamiltonian in
Eq. (9) are generally different between different pairs of
Weyl nodes. The doping level (μ) also differs for each pair.
Therefore, the emergent electric fields from Weyl and anti-
Weyl pairs have different values; the net ~e field becomes
nonzero. Therefore, the current induced by the emergent
electromagnetic induction should be observed in the WSM
with broken spatial-inversion symmetry.
Discussions.—In the mechanism presented here, the

coupling of the external electric field to the electron
orbitals, e.g., the coupling we considered, plays an impor-
tant role. This is due to the fact that Berry’s phase arises
from the nontrivial change of the Bloch wave function over
the period of the cycle. It gives rise to a different
consequence from the Peierls substitution terms, whose
nonlinear responses have been studied recently [16,17,39].
In our result, the photocurrent is induced by the adiabatic

dynamics of electron orbitals; a change in the electron
distribution is not required. Also, since the current is
proportional to Berry’s phase, the photocurrent arises only
for the circularly polarized light while no current arises
for the linearly polarized light. Another important feature
of the coupling to electron orbitals is its anisotropy. Since
Weyl nodes in solids are generally located away from
symmetric points in the Brillouin zone, the coupling to
electron orbitals is generally anisotropic. For instance, in
the case of the coupling given by Eq. (14), in the lowest-
order approximation, the coupling exists only for the x and
y directions as in the Hamiltonian in Eq. (9). As a

consequence, the photocurrent is expected to be highly
sensitive to the direction of the incident light.
In addition to the orbital coupling terms, the Peierls

substitution terms can contribute to photocurrents in the
WSM. Such photovoltaic effects in WSMs have been
theoretically studied in the case of broken time-reversal
symmetry [16,17]. In these theories, however, the change in
the electron distribution, either by the chiral magnetic effect
[16] or by the transfer of the photon angular momentum to
electrons [17] plays a key role in the photovoltaic effect.
In contrast, the mechanism studied in this Letter does not
involve a change in the electron distribution.
In experiments, both mechanisms contribute to the

photocurrent in WSMs. Naively, the contribution from
the change in the distribution, i.e., the contribution from the
Peierls substitution terms, becomes more important as
the absorption of photons increases; the contribution is
expected to be small if ℏω ≪ μ. By considering v ∼ vz ∼
10−29 Jm and doping of electrons per node x ∼ 10−2, the
condition gives ω ≪ 1013―1015 Hz. Another criterion
is given by the violation of the adiabatic approximation.
This could be estimated from the condition that the
amplitude of the wave function in the valence band
becomes much smaller than that of the conduction band.
We find that the criterion is ω ≪ 1021―1023 Hz for the
relaxation time τ ∼ 10−12 s, g ∼ 10−29 Jm=V, and the
optical power 105 W=m2.
Ourmechanism can also be distinguished from the Peierls

substitution mechanism because of its anisotropy. In our
mechanism, as mentioned above, the photocurrent from
each node is highly anisotropic. In materials, it is given by
the sum of the contribution from all nodes, so that the
anisotropy in the net photocurrent depends on the band
structure. However, it can become highly anisotropic with a
small uniaxial symmetry breaking. In contrast, the one by
the Peierls substitution mechanism would be almost iso-
tropic regardless of the band structure, since theHamiltonian
in the lowest-order approximation preserves the SOð3Þ
rotational symmetry under the Peierls substitution.
We also note that even in the WSM with broken time-

reversal symmetry, it might be possible by the chiral
magnetic effect [40–43] to make a difference in doping
levels of Weyl–anti-Weyl pairs, and to break the cancella-
tion of photocurrent between them. In this mechanism, the
application of dc electric and magnetic fields induces chiral
charge proportional to the inner product of the electric and
magnetic fields. Hence, consideration of the chiral mag-
netic effect leads to a nonzero photocurrent. In this case, the
photocurrent is observed as a correction to the conductivity,
where its sign changes by changing the polarization from
the right hand to the left.
Besides the WSM, the argument on the enhancement of

the ~e field potentially applies to other nodal (semi)metals,
such as the surface state of topological insulators, double
Weyl [21,22,28,29] and Dirac [44,45] semimetals, as well

FIG. 2. Schematic picture of a Weyl semimetal with broken
spatial-inversion symmetry. Each cone indicates a Weyl node and
the sign shows the chirality. In the presence of time-reversal
symmetry, two Weyl nodes with the same chirality are related by
this symmetry operation, so that there are at least four Weyl nodes
in the Brillouin zone.
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as those with quadratic band touching [46,47]. Extensions
to other systems merit future studies.
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Note added.—Recently, a preprint on a closely related topic
was released [48].

[1] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[2] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday

Soc. 35, 77 (1963).
[3] H. C. Longuet-Higgins, Proc. R. Soc. A 344, 147 (1975).
[4] J. J. Sakurai, Modern Quantum Mechanics (Addison-

Wesley, Reading, MA, 1993).
[5] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B

62, R6065 (2000).
[6] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y.

Tokura, Science 291, 2573 (2001).
[7] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and

M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[9] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).

[10] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805
(2010).

[11] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806
(2015).

[12] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[13] Q. Niu and D. J. Thouless, J. Phys. A 17, 2453 (1984).
[14] For a review, see: D. Xiao, M. C. Chang, and Q. Niu, Rev.

Mod. Phys. 82, 1959 (2010).
[15] For a review, see: V. M. Fridkin, Crystallogr. Rep. (Transl.

Kristallografiya) 46, 654 (2001).
[16] S. Ebihara, K. Fukushima, and T. Oka, Phys. Rev. B 93,

155107 (2016).
[17] K. Taguchi, T. Imaeda, M. Sato, and Y. Tanaka, Phys. Rev. B

93, 201202 (2016).
[18] S. Murakami, New J. Phys. 9, 356 (2007).
[19] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,

Phys. Rev. B 83, 205101 (2011).
[20] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[21] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev.

Lett. 107, 186806 (2011).
[22] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys.

Rev. Lett. 108, 266802 (2012).
[23] Y. Chen, D. L. Bergman, and A. A. Burkov, Phys. Rev. B

88, 125110 (2013).
[24] Y. Yamaji and M. Imada, Phys. Rev. X 4, 021035 (2014).

[25] T. Guan, C. Lin, C. Yang, Y. Shi, C. Ren, Y. Li, H. Weng,
X. Dai, Z. Fang, S. Yan, and P. Xiong, Phys. Rev. Lett. 115,
087002 (2015).

[26] K. Ueda, J. Fujioka, B.-J. Yang, J. Shiogai, A. Tsukazaki, S.
Nakamura, S. Awaji, N. Nagaosa, and Y. Tokura, Phys. Rev.
Lett. 115, 056402 (2015).

[27] Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T. H. Hsieh,
J. J. Ishikawa, K. Kindo, L. Balents, and S. Nakatsuji,
Nat. Phys. 12, 134 (2016).

[28] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, M. Neupane, H. Zheng, D. Sanchez,
A. Bansil, G. Bian, H. Lin, and M. Zahid Hasan, Proc. Natl.
Acad. Sci. U.S.A. 113, 1180 (2016).

[29] Q. Chen and G. A. Fiete, Phys. Rev. B 93, 155125 (2016).
[30] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,

B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S.
Jia, A. Bansil, H. Lin, and M. Zahid Hasan, Nat. Commun.
6, 7373 (2015).

[31] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Phys. Rev. X 5, 011029 (2015).

[32] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao,
J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z.
Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013
(2015).

[33] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S.-M.
Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil,
F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Zahid Hasan,
Science 349, 613 (2015).

[34] Y. Sun, S.-C. Wu, and B. Yan, Phys. Rev. B 92, 115428
(2015).

[35] The coupling g is given as g ¼ hnjqejδrjjmi, where jmi and
jni are Wannier functions; we used hnjjδrjjmi ∼ 10−10 m
for the estimation.

[36] The magnitude of α1;2 is estimated from an assumption
vb ∼ α1;2b2, where b ∼ 1010 m−1 is the length of the
reciprocal vectors.

[37] H. B. Neilsen and M. Ninomiya, Phys. Lett. B B105, 219
(1981); Nucl. Phys. B185, 20 (1981); B193, 173 (1981).

[38] T. Morimoto and N. Nagaosa, Phys. Rev. Lett. 117, 146603
(2016).

[39] C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran,
Phys. Rev. Lett. 116, 026805 (2016).

[40] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389
(1983).

[41] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys.
Rev. D 78, 074033 (2008).

[42] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[43] T. Hayata and M. Ueda, arXiv:1606.03589.
[44] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava,

and M. Z. Hasan, Nature (London) 452, 970 (2008).
[45] L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard,

R. J. Cava, and N. P. Ong, Science 321, 547 (2008).
[46] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev.

Lett. 103, 046811 (2009).
[47] W. Witczak-Krempa and Y. B. Kim, Phys. Rev. B 85,

045124 (2012).
[48] C.-K. Chan, N. H. Linder, G. Rafael, and P. A. Lee,

arXiv:1607.07839.

PRL 117, 216601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

216601-5

http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1039/df9633500077
http://dx.doi.org/10.1039/df9633500077
http://dx.doi.org/10.1098/rspa.1975.0095
http://dx.doi.org/10.1103/PhysRevB.62.R6065
http://dx.doi.org/10.1103/PhysRevB.62.R6065
http://dx.doi.org/10.1126/science.1058161
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevB.59.14915
http://dx.doi.org/10.1103/PhysRevLett.105.026805
http://dx.doi.org/10.1103/PhysRevLett.105.026805
http://dx.doi.org/10.1103/PhysRevLett.115.216806
http://dx.doi.org/10.1103/PhysRevLett.115.216806
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1088/0305-4470/17/12/016
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1134/1.1387133
http://dx.doi.org/10.1134/1.1387133
http://dx.doi.org/10.1103/PhysRevB.93.155107
http://dx.doi.org/10.1103/PhysRevB.93.155107
http://dx.doi.org/10.1103/PhysRevB.93.201202
http://dx.doi.org/10.1103/PhysRevB.93.201202
http://dx.doi.org/10.1088/1367-2630/9/9/356
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.186806
http://dx.doi.org/10.1103/PhysRevLett.107.186806
http://dx.doi.org/10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1103/PhysRevB.88.125110
http://dx.doi.org/10.1103/PhysRevB.88.125110
http://dx.doi.org/10.1103/PhysRevX.4.021035
http://dx.doi.org/10.1103/PhysRevLett.115.087002
http://dx.doi.org/10.1103/PhysRevLett.115.087002
http://dx.doi.org/10.1103/PhysRevLett.115.056402
http://dx.doi.org/10.1103/PhysRevLett.115.056402
http://dx.doi.org/10.1038/nphys3567
http://dx.doi.org/10.1073/pnas.1514581113
http://dx.doi.org/10.1073/pnas.1514581113
http://dx.doi.org/10.1103/PhysRevB.93.155125
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1103/PhysRevB.92.115428
http://dx.doi.org/10.1103/PhysRevB.92.115428
http://dx.doi.org/10.1016/0370-2693(81)91026-1
http://dx.doi.org/10.1016/0370-2693(81)91026-1
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/10.1103/PhysRevLett.117.146603
http://dx.doi.org/10.1103/PhysRevLett.117.146603
http://dx.doi.org/10.1103/PhysRevLett.116.026805
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevB.88.104412
http://arXiv.org/abs/1606.03589
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1126/science.1158908
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevLett.103.046811
http://dx.doi.org/10.1103/PhysRevB.85.045124
http://dx.doi.org/10.1103/PhysRevB.85.045124
http://arXiv.org/abs/1607.07839

