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Fractional quantum Hall liquids exhibit a rich set of excitations, the lowest energy of which are the
magnetorotons with dispersion minima at a finite momentum. We propose a theory of the magnetorotons
on the quantum Hall plateaux near half filling, namely, at filling fractions ν ¼ N=ð2N þ 1Þ at large N. The
theory involves an infinite number of bosonic fields arising from bosonizing the fluctuations of the shape of
the composite Fermi surface. At zero momentum there are OðNÞ neutral excitations, each carrying a well-
defined spin that runs integer values 2; 3;…. The mixing of modes at nonzero momentum q leads to the
characteristic bending down of the lowest excitation and the appearance of the magnetoroton minima. A
purely algebraic argument shows that the magnetoroton minima are located at qlB ¼ zi=ð2N þ 1Þ, where
lB is the magnetic length and zi are the zeros of the Bessel function J1, independent of the microscopic
details. We argue that these minima are universal features of any two-dimensional Fermi surface coupled to
a gauge field in a small background magnetic field.
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Interacting electrons moving in two dimensions in a
strong magnetic field can form nontrivial topological states:
the fractional quantum Hall liquids [1,2]. When the lowest
Landau level is filled at certain rational filling fractions,
including ν ¼ N=ð2N þ 1Þ and ν ¼ ðN þ 1Þ=ð2N þ 1Þ
(Jain’s sequences), the quantum Hall liquid is gapped,
and the lowest-energy mode is a neutral mode. Girvin,
MacDonald, and Platzman [3] proposed, based on a
variational ansatz, that the neutral excitation has a broad
minimum at qlB ∼ 1 at the Laughlin plateau ν ¼ 1=3.
Several years later, the existence of a neutral mode was
confirmed experimentally [4]. Later experiments revealed a
surprising richness in the structure of the spectrum of
neutral excitations. Unexpectedly, the ν ¼ 1=3 state may
have more than one branch of excitations [5]. Furthermore,
higher in the Jain sequence, i.e., for ν ¼ 2=5, 3=7, etc., the
lowest excitation has been found to have a dispersion
with more than one minima [6,7]. Various theoretical
approaches have been brought to the problem of the
magnetoroton [8–12]. Currently, the most common view-
point is based on the composite fermion picture of
the fractional quantum Hall effect, in which the neutral
modes are bound states of a composite fermion and a
composite hole.
The notion of the composite fermion is tightly con-

nected to the Halperin-Lee-Read (HLR) field theory [13],
proposed as the low-energy description of the half filled
Landau level. Recently, an analysis of the particle-
hole symmetry of the lowest Landau level has lead to a
revision of the HLR proposal: the low-energy degrees of
freedom is now a Dirac composite fermion coupled to a
gauge field [14]. Magnetorotons provide a rare window

into the dynamics of a Fermi surface coupled to a gauge
field, a long-standing problem of condensed matter phys-
ics [15,16].
None of the previous analytical approaches to the

magnetoroton can deal with the non-Fermi liquid at
ν ¼ 1=2 or even with a composite Fermi liquid with
general nonzero values of the Landau parameters. In this
Letter, we develop a theory of neutral excitations in the
quantum Hall liquid, reliable in the limit N → ∞ in Jain’s
series ν ¼ N=ð2N þ 1Þ, where quantum Hall plateaux have
been found to up to at least N ¼ 10 [17]. In this theory, the
neutral excitations are viewed as quantized shape fluctua-
tions of the Fermi surface. This interpretation is quite
different from what has been suggested so far and is one
with a predictive power. In particular, one can relate the
whole dispersion curves of the neutral excitations to
the excitation energies at zero momentum. We find that
the dispersion curves have deep magnetoroton minima at
large N. Remarkably, the momenta at the magnetoroton
minima are independent of all microscopic dynamics and
are in quantitative agreement with existing experimental
data even for small N.
Quantizing the shape of the Fermi surface.—To find the

magnetorotons we will first bosonize the Fermi surface.
This procedure was studied previously [18–21]. Our
approach relies on a commutation algebra of fluctuations
of the shape of the Fermi surface, first derived by Haldane
[18]. Here we provide a simple semiclassical derivation of
this algebra.
We assume that the ν ¼ 1=2 state is gapless and has a

Fermi surface with the Fermi momentum pF, related to the
external magnetic field B by p2

F ¼ B. The Fermi liquid is
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characterized by the Fermi velocity vF and Landau’s
parameters Fn. The effective mass is defined as
m� ¼ pF=vF, the Fermi energy scale as ϵF ¼ vFpF.
In the fractional quantum Hall ν ¼ N=ð2N þ 1Þ state,

the composite fermions live in a magnetic field
b ¼ B=ð2N þ 1Þ, effectively forming an integer quantum
Hall state. We are interested in the regime of frequency and
momentum of the order of N−1 compared to the Fermi
energy and momentum. We now propose that all low-
energy excitations can be viewed as deformations of the
Fermi surface from the circular shape, which we parameter-
ize by a function pFðt;x; θÞ that depends on time and space
and also on the direction in momentum space θ
(py=px ¼ tan θ) (see Fig. 1). Furthermore, we decompose
the perturbation into different angular momentum channels:

pFðt;x; θÞ ¼ p0
F þ uðt;x; θÞ ¼ p0

F þ
X∞
n¼−∞

unðt;xÞe−inθ:

ð1Þ

In the language of Landau’s Fermi liquid theory, the state
parameterized by pFðt;x; θÞ corresponds to a distribution
function npðt;xÞ which is one inside the Fermi line and
zero outside the line.
We now derive the commutation relation between the uns

with the following prescription. If we define an operator F
(and similarly G) as

F ¼
Z

dxdp
ð2πÞ2 Fðx;pÞnpðxÞ; ð2Þ

where npðxÞ is the quasiparticle distribution function, then
we need to impose the condition on the commutation
relation so that

½F;G� ¼ −i
Z

dxdp
ð2πÞ2 fF;Ggðx;pÞnpðxÞ; ð3Þ

where the fF;Gg is the classical Poisson bracket between
F and G,

fF;Gg ¼ ∂F
∂pi

∂G
∂xi −

∂G
∂pi

∂F
∂xi − bϵij

∂F
∂pi

∂G
∂pj

; ð4Þ

where we have allowed the composite fermions to be
in an external magnetic field b. For Jain’s sequences
b ¼ �B=ð2N þ 1Þ. Restricting np to be of the form of
the step function (1 inside the Fermi line and 0 outside), F,
G, and the right-hand side of Eq. (3) become functionals of
the shape of the Fermi surface, and one can easily derive the
commutator of the small perturbations u:

½uðx; θÞ; uðx0; θ0Þ� ¼ ið2πÞ2
pF

�
−niðθÞ

∂
∂xi þ

b
pF

∂
∂θ

�

× ½δðx − x0Þδðθ − θ0Þ� þOðuÞ; ð5Þ

where nðθÞ ¼ ðcos θ; sin θÞ. In terms of un, the formula
reads

½umðqÞ; unðq0Þ� ¼ π

pF

�
2bm
pF

δmþn;0 þ δmþn;1qþ

þ δmþn;−1q−

�
ð2πÞ2δðqþ q0Þ þOðuÞ;

ð6Þ

where q� ¼ qx � iqy. This commutation relation has been
previously derived in Ref. [18] by extending Tomonaga’s
bosonization method to higher dimensions. Note that the
algebra depends only on the size of the Fermi surface pF
but not on any dynamic properties (Fermi velocity,
Landau’s parameters, etc.).
Gauging the Fermi surface.—The composite fermion is

coupled to a dynamical gauge field. A Fermi surface
coupled to a gauge field is a long-standing theoretical
problem, and the bosonized language allows us to partly
address it.
In the bosonic description, the temporal component of

the gauge field a0 is coupled to u0, and the spatial
components are coupled to u�1. In the Dirac composite
fermion theory, the leading term in action for aμ is the
Maxwell term. If the dynamical gauge field is at infinitely
strong coupling, then the constraints u0 ¼ u�1 ¼ 0 arise as
the result of the equations of motion δS=δaμ ¼ 0. The
assumption of strong gauge coupling should become better
and better in the limit N → ∞. This is due to two reasons.
First, the coupling of the composite fermions to the gauge
field is set at the Fermi energy ϵF and momentum pF, while
the scales of interest for our problem are ϵF=N and pF=N.
This gauge coupling is relevant for contact and marginal for
Coulomb interactions. Second, at these low energies the
Fermi surface is effectively OðNÞ fermionic species [cor-
responding to OðNÞ patches on the Fermi surface in the
renormalization group treatment [22,23]], boosting the ’t
Hooft coupling by an additional factor of N. (The argument
is more complicated in the case of the HLR theory with a

θ
p

p

x

y

pF(θ)

FIG. 1. A deformed Fermi surface.
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Chern-Simons term in the action for aμ, but the conclusion
is the same).
Hamiltonian and equation of motion.—Assuming the

composite fermions form a Fermi liquid with Landau’s
parameters Fn, the Hamiltonian of the system is

H ¼ vFpF

4π

Z
dx

X∞
n¼−∞

ð1þ FnÞunðxÞu−nðxÞ; ð7Þ

where Fn are the Landau parameters. In the case of a
marginal Fermi liquid, we may understand by Fn the
Landau parameters evaluated at the scale of the energy
gap. The Hamiltonian (7) and the commutation relations (6)
form our theory of the neutral excitations in the fractional
quantum Hall fluid. This theory involves an infinite number
of fields un, reminiscent of higher-spin relativistic field
theories [24,25].
Let us first consider a zero wave number. Then according

to Eq. (6) the operators u can be divided into pairs of
creation and annihilation operators ðu−2; u2Þ, ðu−3; u3Þ,
etc., with un for n> 0 being the annihilation and with n< 0
creation operators. The frequency of the oscillators are

ωð0Þ
n ¼ nð1þ FnÞωc; ωc ¼

b
m�

: ð8Þ

The index n can be interpreted as the spin of the excitation.
For example, the contribution of spin-n mode to the
spectral density of the density operator is expected to be
q2n at small n, so the leading contribution to the spectral
weight comes from the n ¼ 2mode. The ordering in energy
of the modes depends on Fn; in the simplest scenario n ¼ 2
is the lowest mode. Since ωc ∼ N−1, and the cutoff of our
theory is OðN0Þ, one should expect OðNÞ of these modes
(provided that Fn does not increase as a power of n).
If one putsFn ¼ 0 in Eq. (8), onewould findωð0Þ

n ¼ nωc.
This can be interpreted as the energy of creating a pair of a
quasiparticle and a quasihole, separated by n Landau-level
steps. Note that the naïve lowest mode with n ¼ 1 dis-
appears due to the coupling to the dynamical gauge field
[26]. As far as we know, Eq. (8) does not have a simple
interpretation when the Landau parameters are nonzero.
To find the dispersion relation at finite wave number q,

one needs to solve the linearized equation of motion, which
can be obtained by taking the commutator with the
Hamiltonian (7). In momentum space, choosing q to point
along the x axis, the equation is

½ω − nð1þ FnÞωc�un ¼
vFq
2

½ð1þ Fn−1Þun−1
þ ð1þ Fnþ1Þunþ1� ð9Þ

for n ≥ 2 and n ≤ −2 and where by construction u�1 ¼ 0.
The task of finding the spectrum of excitations thus reduces
to finding the eigenvalues of a certain tridiagonal matrix.
Using Eq. (8), this equation can be rewritten as

ðω − ωð0Þ
n Þun ¼

2N þ 1

2
qlB

�
ωð0Þ
n−1

n − 1
un−1 þ

ωð0Þ
nþ1

nþ 1
unþ1

�
:

ð10Þ

Remarkably, Eq. (10) determines completely the dispersion
curves from their starting points at q ¼ 0. Thus, we
speculate that Eq. (10) is valid even when the ν ¼ 1=2
state is a non-Fermi liquid. For small q, the equation can be
solved perturbatively over q. For example, for the n ¼ 2
mode we find

ω2ðqÞ
ωð0Þ
2

¼ 1 −
ð2N þ 1Þ2

24ð1 − ωð0Þ
2 =ωð0Þ

3 Þ
ðqlBÞ2 þOðq4Þ: ð11Þ

If the spin-2 mode is the lightest one, then its dispersion
curve bends down when we go to finite q. Equation (11)
relates the curvature at q ¼ 0 of the lowest mode and the
ratio of the energies of the spin-3 and spin-2 modes and is
one prediction of the theory.
It is intriguing that Ref. [5] found two modes at ν ¼ 1=3.

While it is tempting to identified them with spin-2 and spin-
3 excitations, it is unclear if such an identification can be
made at such a low value of N, N ¼ 1.
The magnetoroton minima.—For NqlB ∼ 1 one has to

solve the full system of equations, Eq. (9) or (10), to find
the dispersion curves. In Fig. 2, we plot a typical result. We
note that the energy of the lowest mode goes to zero at a
finite momentum. We now show analytically that this
always happens at an infinitely strong gauge coupling.
We need to solve Eq. (10) with ω ¼ 0 and the boundary
conditions u1 ¼ 0 and un → 0 when n → ∞. The solution
to this recursion relation, which satisfies the boundary
condition un → 0 when n → ∞, is

un ¼
ð−1Þn
1þ Fn

Jn

�
pFq
b

�
: ð12Þ

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 2. The dispersion curves for the lowest two modes for
F2 ¼ 0.35, Fn ¼ 0 with n ≥ 3. The horizontal axis is
ð2N þ 1ÞqlB, and the vertical axis is the energy in units of
ωc. The cusp at zero energy is an artifact of the infinite N limit.

PRL 117, 216403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

216403-3



The boundary condition u1 ¼ 0 requires J1ðpFq=bÞ ¼ 0.
The latter occurs at q ¼ zib=pF, where zi are the zeros of
the Bessel function J1. One can write this as

qlB ¼ zi
b
p2
F
¼ zi

b
B
¼ zi

2N þ 1
ð13Þ

for the filling fractions ν ¼ N=ð2N þ 1Þ and ν ¼ ðN þ 1Þ=
ð2N þ 1Þ.
The fact that the energy of an excitation is exactly zero is

an artifact of the strong gauge coupling approximation,
which we have argued to occur at infinite N; when the hard
constraints on u0 ¼ u�1 ¼ 0 are relaxed, these zeros of the
dispersion relation should become minima. The values of
the energy at the minima are smaller by a power of N
compared to the energy scale of the excitations at q ¼ 0
(ωð0Þ

n ) but are nevertheless nonzero [27]. This is confirmed
in a more detailed treatment of the composite fermions,
taking into account the density-density Coulomb interac-
tion [28]. On the other hand, the strict N ¼ ∞ limit of
infinitely strong gauge coupling allows us to determine
analytically the locations of the minima of the dispersion
curves. Here we find a surprising result that the positions of
the minima on the momentum axis do not at all depend on
the parameters appearing in the Hamiltonian [29].
We now show that the robustness of the locations of the

magnetoroton minima is due to them being determined by
the commutator algebra (6) but not by the Hamiltonian. In
fact, at the values of q set by Eq. (13), there exists a pair of
operators Ô and Ô†, which commutes with all un (and
consequently with the Hamiltonian) to leading order in u:

Ô ¼
X∞
n¼2

ð−1ÞnJn
�
pF

b
q

�
un: ð14Þ

In other words, if one defines the commutator matrix Cmn
as

½umðqÞ; u−nðq0Þ� ¼ Cmnð2πÞ2δðqþ q0Þ ð15Þ

for m, n > 0, where

Cmn ¼
2πb
p2
F

0
BBBBBB@

2 z 0 0 …

z 3 z 0 …

0 z 4 z …

0 0 z 5 …

… … … … …

1
CCCCCCA
; z¼ 2Nþ 1

2
qlB;

ð16Þ

then at the momenta (13) the matrix C has a zero
eigenvalue. Across these momenta, the role of creation
and annihilation operators is exchanged for one pair of
operators. It is not difficult to show that any Hamiltonian

quadratic in u’s needs to have a zero eigenvalue when such
an exchange occurs.
The positions of the magnetoroton minima (13) and their

complete independence of the details of the Hamiltonian
are the central result of this Letter. In the past, model
calculations have shown that the positions of the magneto-
roton minima depend very weakly on the interactions (see,
e.g., Ref. [30]), but the fundamental reason behind this fact
was not understood.
It is worth remembering, however, that our derivation

requires qlB ≪ 1, which means that zi in Eq. (13) should
be one of the first oðNÞ roots of J1. However, the values
found in Eq. (13) seem to fit the existing data quite well
even for relatively large qlB. Limiting ourselves to the
range explored in Ref. [7], qlB ≲ 1.2, our prediction for the
locations of the magnetoroton minima is summarized in
the following table (experimental values extracted from
Ref. [7] in parentheses):

n ¼ 1 n ¼ 2 n ¼ 3

ν ¼ 2=5 0.77 (0.86)
ν ¼ 3=7 0.55 (0.52) 1.00 (1.06)
ν ¼ 4=9 0.43 (0.40) 0.78 (0.85) 1.13 (1.25)

All these values are surprisingly close (within 15% or
less) to existing experimental [7] and numerical [10]
results, despite the smallness of N and the large values
of the qlB under discussion. Even forN ¼ 1, the calculated
position of the magnetoroton qlB ¼ 1.28 is in good
agreement with the original estimate of Ref. [3]. We
interpret the agreement as confirming the validity of the
interpretation of the low-lying neutral excitations as shape
fluctuations of the Fermi surface.
Since the locations of the magnetoroton minima depend

only on the commutator algebra, which originates from the
kinematics of the Fermi surface rather than from the
Hamiltonian, we expect the minima would survive even
in the non-Fermi-liquid regime of short-ranged electron-
electron interactions.
In summary, the universal momenta at the magnetoroton

minima (13), along with the existence of multiple branches
of neutral excitations, each with a distinct value of the spin
at q ¼ 0, are the main predictions of this Letter. These
predictions should be valid in any system described by a
Fermi surface coupled to a dynamical gauge field in a small
background magnetic field.
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