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The role of multiple soliton and breather interactions in the formation of very high waves is disclosed
within the framework of the integrable modified Korteweg–de Vries (MKdV) equation. Optimal conditions
for the focusing of many solitons are formulated explicitly. Namely, trains of ordered solitons with alternate
polarities evolve to huge strongly localized transient waves. The focused wave amplitude is exactly the sum
of the focusing soliton heights; the maximum wave inherits the polarity of the fastest soliton in the train.
The focusing of several solitary waves or/and breathers may naturally occur in a soliton gas and will lead to
rogue-wave-type dynamics; hence, it represents a new nonlinear mechanism of rogue wave generation. The
discovered scenario depends crucially on the soliton polarities (phases), and is not taken into account by
existing kinetic theories. The performance of the soliton mechanism of rogue wave generation is shown for
the example of the focusing MKdV equation, when solitons possess “frozen” phases (certain polarities),
though the approach is efficient in some other integrable systems which admit soliton and breather
solutions.
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Introduction.—The generation of unexpectedly large
waves from stochastic fields has attracted much interest
in many recent studies thanks to the recognition of the
rogue wave phenomenon in marine and optical realms (see
Ref. [1] and many others). The modulational instability is
the most recognized physical effect capable of the gen-
eration of very high waves due to the energy transfer from
many waves towards an inoculating perturbation of the
wave train. Most importantly, the nonlinear dynamics alters
essentially the statistical properties of stochastic waves,
favoring the occurrence of very high waves. The account-
ing for significant deviations from the quasi-Gaussian
states breaks down the classic assumptions of the wave
turbulence theory. The wave phase averaging become
inappropriate; thus, direct simulations of irregular waves
are involved in the discovery of the statistics of high waved.
The strongly nonlinear limit of irregular waves in weakly

dispersive media may be treated as a soliton gas which is
another intriguing topic of modern science. Kinetic equa-
tions for soliton ensembles were derived in Ref. [2]. It is
essential that these equations describe transport of eigen-
values in space but do not concern soliton phases (or
polarities). Besides general approaches for description of
the integrable turbulence considerable understanding may
be achieved by virtue of simplified problem statements. In
particular, the effect of soliton collisions on statistical
moments in integrable Korteweg–de Vries (KdV) and
modified KdV (MKdV) equations was considered in
Refs. [3,4] through the prism of a two-soliton interaction.
These classic equations govern wave dynamics in various

important applications. In the course of interaction of
two KdV solitons the maximum displacement remains
always below the maximum soliton amplitude. Collisions
of unipolar MKdV solitons behave similarly to the KdV
solitons and never cause larger waves. This point confirmed
in direct numerical simulations within integrable as well as
nonintegrable equations of the KdV type [5,6]. When the
conventional definition of a rogue wave at a time t is
adopted for function of space and time uðx; tÞ in form

AI ≡ maxxjuðx; tÞj
maxxjuðx; t → −∞Þj > 2; ð1Þ

then in the all considered cases of unipolar soliton
interactions AI ≤ 1.
Two soliton polarities are allowed in the MKdV frame-

work due to the isotropic nonlinearity. In contrast to the
KdV soliton collision, when two MKdV solitons of
opposite polarity interact, the faster soliton virtually
absorbs the smaller soliton rising, and emits it back when
overtaken [3,7]. Surprisingly, the maximum of the transient
large wave is given by the exact sum of the heights of
colliding solitons, and then the attainable amplification is
AI ≤ 2. Hence, the peculiarity of the “absorb-emit” colli-
sion of bipolar solitons yields occurrence of higher waves
than could happen in the situation of a unipolar soliton gas.
In particular, the occurrence of high waves that are twice
higher than the typical soliton height was observed in
numerical simulations [6].
The competitive roles of solitons and dispersive trains in

the formation of strongly amplified waves were estimated
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within the frameworks of the KdV and nonlinear
Schrödinger (NLS) equations in Ref. [8]. The analysis of
the soliton composition of designed rogue waves in the
form of one-humped perturbations revealed a surprising
fact: a big wave characterized by AI > 2 consists of
maximum one soliton. The presence of many solitons in
the train, which focuses due to the difference in local wave
velocities, prevents formation of a very high wave.
The crucial distinction from the envelope soliton dynam-

ics in optical fibers, where multiple soliton interactions is a
recognized mechanism of rogue wave generation [9,10],
should be stressed: (i) solitons of the MKdV equation
preserve their phases “frozen” (do not change polarity), and
(ii) they interact purely elastically and thus do not form
giant pulses via fusion or acquiring energy from many
smaller solitons.
Thus the role of multiple soliton collisions in spontaneous

generation of very high waves has not been clarified so far; it
is addressed in this study within the framework of theMKdV
equation. In particular, we suggest general conditions when
many solitons or/and breathers focus in the optimal phase,
providing superposition of their partial amplitudes. The
process of huge wave formation occurs rapidly and to a
large degree unexpectedly, and, thus conforms with all
attributes of the rogue wave phenomenon.
Generation of rogue waves as a result of multiple soliton

collisions.—In this Letter the standard form of the modified
Korteweg–de Vries equation with the focusing type of
nonlinearity is used

ut þ 6u2ux þ uxxx ¼ 0; ð2Þ
where uðx; tÞ is real. Note that the famous Miura trans-
formation converts solutions of Eq. (2) to complex-valued
solutions of KdV. The equation is solvable by means of the
inverse scattering transform [11] using the fact that the
spectrum of the associated scattering problem does not
evolve in time. Discrete complex eigenvalues fλg generally
appear in quartets and correspond to spatially localized
solutions (solitons and breathers), which represent the long-
term solution of the Cauchy problem with decaying
boundary conditions. A pair of real discrete eigenvalues
f�λg is responsible for one soliton

usðx; tÞ ¼ a= cosh½aðx − x0Þ − a3t�; ð3Þ
where a is the soliton amplitude, and a2 is its velocity,
related to the eigenvalue as jaj ¼ 2jλj. As usual, the
spectrum contains information on neither the initial loca-
tion of the soliton, x0, nor its phase, which in the case of
solution (3) means polarity of the soliton. Two soliton
branches exist depending on the sign of real a.
The exact N-soliton solution to Eq. (2) may be obtained,

for example, using the Darboux transform [12]. It may be
represented in the form (see details and references in
Ref. [7])

uNðx; tÞ ¼ −i
∂
∂x ln

Wðψ1x;ψ2x;…;ψNxÞ
Wðψ1;ψ2;…;ψNÞ

;

ψ j ¼ eΘj þ ie−Θj ;

Θj ¼ ½μjðx − xjÞ − 4μ3j t� þ iθj=2: ð4Þ

Here, Wð·Þ denote Wronskians for N eigenfunctions ψ j (in
the denominator), and their spatial derivatives (in the
numerator). Each parameter μj, of the seed function ψ j,
j ¼ 1;…; N coincides with the resulting eigenvalue of the
associated scattering problem λj up to signs of real and
imaginary parts. In contrast to λj, parameters μj in Eq. (4)
are strictly definite and hence values μj will be used
hereafter for description of the eigenspectrum. The param-
eters of solitons which compose the solution relate to the
corresponding eigenvalues as jajj ¼ 2jμjj, where μj
are real.
The following three statements which provide the

basis for construction of focusing nonlinear wave trains
may be proved rigorously. We do not reproduce the proof
here, it employs inner symmetries of solution (4) and
properties of determinants with the use of the formal
representation,

Wðψ1;…;ψNÞ ¼
X

α

ð−1Þnψα1∂xψα2 ·… · ∂N−1
x ψαN

[a similar expression reads for Wðψ1x;…;ψNxÞ]. Here the
summation is performed along all possible combinations of
indices ðα1; α2;…; αNÞ taken from the sequence of natural
numbers ð1; 2;…; NÞ; nðα1; α2;…; αNÞ is the number of
inversions between the indices. (i) The choice of zero initial
coordinates and phases, xj ¼ 0 and θj ¼ 0 for all
j ¼ 1;…; N, makes point ðx ¼ 0; t ¼ 0Þ a local extremum
for function uNðx; tÞ. Functions uNðx; t ¼ 0Þ and uNðx ¼
0; tÞ are symmetric with respect to corresponding variables.
Thus the point (0,0) will be hereafter referred to as the
focusing point. (ii) The solution in the focusing point is
specified by parameters μj in a transparent way,

uNð0; 0Þ ¼ ð−1ÞN−1
XN

j¼1

2μj; ð5Þ

which holds true for complex μj as well. (iii) In the case of a
one-soliton solution, signs of μj and aj agree, a1 ¼ 2μ1.
When N > 1, polarities of the partial solitons depend on
combinations of all μj. The polarity of soliton number s is
specified by the sign of the product

sgn

�
μs

YN

j¼1;j≠s
ðμ2j − μ2sÞ

�
: ð6Þ

If the solitons are sorted in ascending order of values μ2j ,
then the first (slowest) soliton has the same polarity as the
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sign of corresponding μ1, the second soliton has polarity
opposite to μ2, and so on. The desired polarities of all
solitons may be set by the choice of signs of μj.
According to Eq. (5), the most optimal focusing of a

soliton train (biggest juNð0; 0Þj) is obviously when all
parameters μj have the same signs. At instants long before
the collision the solitons are located in order of descending
velocities towards the focusing site, and then the solitons
have alternating polarities according to Eq. (6) (thin black
lines in Fig. 1). It follows from the joint consideration of
Eqs. (5) and (6) that uNð0; 0Þ inherits polarity of the fastest
soliton in the train. The absorb-emit collision of two
solitons is a particular case; then a1 ¼ 2μ1, a2 ¼ −2μ2,
μ2 > μ1 > 0, and the focused wave has negative peak. The
interaction of unipolar solitons corresponds to alternating
signs of μj, and then juNð0; 0Þj never exceeds the height of
the largest soliton.
It is easy to see that for given energy (represented by the

integral of motion
R
∞
−∞ u2dx) the maximum value of AI is

achieved when all μj are equal [then Eq. (4) contains
singularity, which requires special examination]. Different
eigenvalues ensure nondegenerative solutions of the inverse
scattering problem; below we consider solitons with differ-
ent (but close) velocities.
We chose the maximum (fastest) soliton of the unit

amplitude, a1 ¼ 1 and, correspondingly, unit velocity. All
the figures below show solutions of the analytic N-soliton
formula (4). In addition, some of the solutions were verified
in direct numerical simulations of the MKdV equation; in
what follows the initial soliton positions and phases are put
equal to zeros, xj ¼ 0, θj ¼ 0, j ¼ 1;…; N.
Two examples of rogue waves caused by collisions of

MKdV solitons are shown in Fig. 1 for even (N ¼ 6) and
odd (N ¼ 7) number of solitons. The beams of solitons of
different polarities before collision are shown by thin lines.
The solitons are ordered in velocity so that the faster
solitons overtake the slower ones when they propagate.

The focused waves (thick curves in Fig. 1) have compli-
cated shapes and are essentially sign changing (thus,
assumptions implied in study [8] fail in this case). They
look rather similar in cases of odd and even N. The maxima
in Figs. 1(a), 1(b) agree with Eq. (5), and are equal to 5.85
and 6.79, respectively. Thus, amplification AI may be
unlimitedly large if sufficient numbers of solitons collide.
The space-time diagram of the solution, and evolution in

time of its maximal and minimal values are shown in Fig. 2
for the case N ¼ 7 displayed in Fig. 1(b). The solitons
experience strong shifts when they collide; the rogue wave
lifetime is very short. The fastest soliton remains the
highest wave throughout the collision; it experiences abrupt
forward shift. It is clear that the process cannot be
interpreted as consequent collisions of soliton pairs, many
solitons contribute to the dynamics simultaneously.
Rogue waves from collisions of MKdV breathers.—

MKdV breathers are specified by quartets of complex
conjugated eigenvalues λ ¼ f�a=2� ib=2g, where a and
b are real values. A breather solution may be written as

ubr ¼ 2ab
a sinhΨ sinΦ − b coshΨ cosΦ

a2sin2Φ − b2cosh2Ψ
;

Ψ ¼ aðx − x0 − ða2 − 3b2ÞtÞ;
Φ ¼ bðx − x0 − ð3a2 − b2ÞtÞ þ θ0; ð7Þ

where Ψ controls the wave envelope, and Φ corresponds to
the inner wave. In the case jbj ≪ jaj the breather resembles
an everlasting collision by turns between two solitons of
different polarities [see the leftmost group in Fig. 3(a) and
corresponding path in Fig. 3(b)]; the breather represents a
wave packet [the rightmost group in Fig. 3(a) is an
example] when jbj ≫ jaj. In the course of the evolution,
values of ubrðx; tÞ are confined between −2jaj and þ2jaj.
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FIG. 1. Huge waves caused by focusing of MKdV soliton
trains that consist of 6 (a) and 7 (b) solitons: instants long
before focusing (t ¼ −100) and at the focusing (t ¼ 0). The
soliton parameters are (a) a ¼ f1; 0.99; 0.98; 0.97; 0.96; 0.95g
and (b) a ¼ f1; 0.99; 0.98; 0.97; 0.96; 0.95; 0.94g.
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FIG. 2. Spatiotemporal plot of uNðx; tÞ (a) and corresponding
temporal evolution of maximum and minimum values (b) for case
N ¼ 7, shown in Fig. 1(b).
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Solitons of opposite polarities with close velocities are
known to tend to form bound states due to weak perturba-
tions (e.g., weak dissipation), as is described by a bifurca-
tion of two close real eigenvalues to two complex
conjugated values [13]. Solution (4) may be used for
producing multibreather solutions or combined multi-
soliton-breather solutions. A breather with parameters
ðak; bkÞ may be built in the exact solution uN when one
pair of parameters μj, μjþ1 is specified in the form

μj ¼ ðak þ ibkÞ=2; μjþ1 ¼ ðak − ibkÞ=2: ð8Þ

Since Eq. (5) remains valid for complex eigenvalues, a
proper choice of breather parameters may provide a
superposition of the breathers (or breathers and solitons)
in phase.
Nondegenerative multibreather solutions may consist,

for example, of packets with the same amplitudes but
different velocities, as is the optimal choice with respect to
the maximum amplification AI. Such an example is shown
in Fig. 3, where solution (4) describes the evolution of
three breathers with equal amplitudes. They collide and
lead to formation of a transient wave with 3 times larger
amplitude. The maximum amplitude of uN before the
collision oscillates and does not exceed 2jaj [Fig. 3(c)].
Figure 3(b) displays how faster breathers outrun the slower
ones. The behavior of the solution close to the focusing

point [Fig. 3(b)] is very similar to the case of multisoliton
interaction [Fig. 2(b), note different scales in the figures],
breathers delay oscillating for some time, the rogue event is
characterized by a very short lifetime.
Conclusion.—The effect of multiple soliton interactions

on properties of soliton ensembles strongly depends on
details of the collision process. In the case of KdV-type
equations for real-valued fields solitons own frozen phases
(polarities). Unipolar solitons repulse, and thus do not
produce higher waves at all. In contrast, solitons of
opposite polarities which may coexist within the MKdV
framework can virtually inverse the polarity of the slower
soliton, and then much higher waves occur. This process is
not restricted to pairs of bipolar solitons, but may involve
unlimited number of solitons resulting in nontrivial dynam-
ics of the solution. This matter requires involved statistical
description beyond the paradigm of pairwise soliton
interactions, which does not exist at present.
A simultaneous intersection of soliton trajectories is

necessary but not sufficient for the efficient focusing of
soliton trains. When the solitons approach the focusing
point, they are positioned in the order of descending
velocities. In addition they should have alternate polarities,
which provides the most optimal pattern for generation of
extreme bursts. Then the wave amplitude in focus is just the
sum of heights of the focusing solitons. Thus the maximum
wave amplification is limited only by the number of
interacting solitons. Trains of MKdV breathers, which
may be considered as coupled solitons of opposite polarity,
behave similarly. They also may be targeted to focus in
phase; then the partial breather amplitudes sum up.
The presented approach for constructing soliton and

breather trains that cause rogue events is not confined to the
framework of the modified KdV equation. We have
checked that similar scenarios take place in other integrable
systems which admit soliton solutions with more than one
allowed phase or polarity, such as the focusing Gardner
equation (quadratic-cubic extension of the KdV equation)
and the focusing nonlinear Schrödinger equation (see
also Ref. [10]).
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