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We prove that any nonzero inertia, however small, is able to change the nature of the synchronization
transition in Kuramoto-like models, either from continuous to discontinuous or from discontinuous to
continuous. This result is obtained through an unstable manifold expansion in the spirit of Crawford, which
features singularities in the vicinity of the bifurcation. Far from being unwanted artifacts, these singularities
actually control the qualitative behavior of the system. Our numerical tests fully support this picture.
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Understanding synchronization in large populations of
coupled oscillators is a question which arises in many
different fields, from physics to neuroscience, chemistry,
and biology [1]. Describing the oscillators with their phases
only, Winfree [2] and Kuramoto [3] have introduced simple
models for this phenomenon. The latter model, which
features a sinusoidal coupling and an all-to-all interaction
between oscillators, has become a paradigmatic model for
synchronization, and its very rich behavior prompted an
enormous number of studies. The Kuramoto model displays
a transition between an incoherent state, where each oscil-
lator rotates at its own intrinsic frequency and a state where
at least some oscillators are phase locked. The degree of
coherence is measured by an order parameter r, which
bifurcates—continuously for symmetric unimodal frequency
distributions—from 0 when the coupling is increased or the
dispersion in intrinsic frequencies decreases. In order to
better fit modeling needs, it has been necessary to consider
refined models, including, for instance, citing just
a few contributions: more general coupling [4], noise [5],
phase shifts bringing frustration [6], delays [7,8], or a more
realistic interaction topology [9,10]. In particular, inertia has
been introduced to describe the synchronization of a certain
firefly [11] and proved later useful to model coupled
Josephson junctions [12,13] and power grids [14,15];
recently, an inertial model on a complex network was shown
to display a new type of “explosive synchronization” [16]. It
has been quickly recognized [17,18] that a strong enough
inertia could turn the continuous Kuramoto transition into a
discontinuous one with hysteresis. At first sight, a natural
adaptation of the original clever self-consistent mean-field
approach by Kuramoto [3] seems to explain satisfactorily
this observation [17,19]: a sufficiently large inertia induces a
bistable dynamical behavior of some oscillators that trans-
lates into a hysteretic dynamics at the collective level.
However, Fig. 1 makes clear that even a small inertia is
enough to trigger a discontinuous transition: this cannot be
accounted for by the bistability picture.

In this Letter, we show analytically why any amount of
inertia, however small, can act both ways: it can turn
discontinuous an otherwise continuous transition and the
other way around. These results are obtained through a
careful unstable manifold expansion in the spirit of
Refs. [21–23] (see, also, Ref. [24] for a very readable
discussion of the method), which uses the instability rate of
the incoherent state as a small parameter: in the absence of
noise, the linearized problem features a continuous spec-
trum on the imaginary axis, which may induce singularities
in the usual expansions. We point out that these singular-
ities related to the continuous spectrum are key for a
comprehensive understanding of the bifurcations: they
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FIG. 1. Asymptotic order parameter r as a function of K for
differentm (α ¼ 0). The arrows indicate the direction of the jumps.
Without inertia, the transition is continuous, while a hysteresis
appears already for small m. Note the presence of a single branch
with r ≠ 0 for m ¼ 0.25, 0.5, while there are two for m ¼ 1. The
dashed line is the partially synchronized solution given by the self-
consistent method (see Ref. [20]) for m ¼ 0.5. The frequency
distribution is Lorentzian: gσðωÞ ¼ ðσ=πÞ=ðσ2 þ ω2Þ with σ ¼ 1.
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control the phase diagram in the presence of frustration, as
well as the Hamiltonian limit, where the very strong
nonlinear effects of the Vlasov equation are recovered.
We compare our predictions with large-scale numerical
simulations: using a GPU (graphics processing unit)
architecture allows us to reach a number of oscillators
significantly larger than in most previous works; this is
crucial to test with a reasonable precision scaling laws in
the vicinity of bifurcations.
We believe that these results should establish the singular

expansions in the manner of Crawford as another method of
choice to understand the qualitative behavior of Kuramoto-
like models, along the original mean-field self-consistent
method, the Ott-Antonsen ansatz [25,26] and the bifurca-
tion methods used in Refs. [18,27–29]. Indeed, this method
is applicable for the generic distribution function and
interaction and provides information on the order of the
transition and scaling laws close to the bifurcation.
The model.—Our starting point is the model introduced

by Tanaka et al. [17], which adds inertia to the original
Kuramoto model. It has been since then studied by many
authors, often in the presence of noise, and we first discuss
some of the theoretical results obtained so far. Reference [17]
adapts the original self-consistent Kuramoto method to the
presence of inertia, and predicts consistently with the
numerics that a large enough inertia makes the transition
discontinuous. The small inertia case was apparently not
studied. In Refs. [18,27], the authors perform a bifurcation
study of the incoherent state in the presence of noise and find
a critical inertia beyond which the transition should be
discontinuous; their result suggests that a small inertia can
make a qualitative difference, but the singular nature of
the small-noise limit makes an extrapolation to zero noise
difficult.We note that a full “phase diagram” compatiblewith
Refs. [18,27] is presented inRef. [30] (see, also,Ref. [29]). In
the following, we also add to the model in Ref. [17] a
“frustration” parameter α as in Ref. [6]; this will provide us
with a further parameter to make testable predictions. Our
resulting model is then the same as Ref. [29], without noise.
Each of the N oscillators in the system has a frequency

vi, with i ∈ 1;…; N and a phase θi ∈ ½0; 2π½; it also has a
natural frequency ωi drawn from a frequency distribution g.
We assume that g is even [gð−ωÞ ¼ gðωÞ]. If there is no
coupling between the oscillators, the actual frequency vi
tends to the natural frequency ωi. The dynamical equations
for the positions and velocities are

_θi ¼ vi; ð1aÞ

m _vi ¼ γðωi − viÞ þ
K
N

XN
j¼1

sinðθj − θi − αÞ: ð1bÞ

If the inertiam tends to 0, one recovers the usualKuramoto
model after a suitable change in the time variable,

_θi ¼ ωi þ
K
N

XN
j¼1

sinðθj − θi − αÞ: ð2Þ

If γ ¼ 0, there is no restoring force towards the natural
frequency, and one obtains for α ¼ 0 a Hamiltonian model
with an all-to-all coupling and a cosine interaction potential.
It is usually called Heisenberg Mean-Field (HMF) model
in the literature and has served as a simple paradigmatic
model for mean-field Hamiltonian dynamics; see Ref. [31]
for a review. We now use rescaled parameters ~m ¼ m=γ,
~K ¼ K=γ; the Kuramoto limit corresponds to ~m → 0 and the
Vlasov limit to ~m → ∞, ~m= ~K ¼ cste. Our parameters now
coincide with those of Ref. [17]. Dropping the~ for conven-
ience in the N → ∞ limit, the system (1) is described by a
kinetic equation for the phase space density Fðθ; v;ω; tÞ,
∂F
∂t þ v

∂F
∂θ þ K

2im
ðr1½F�e−iθe−iα − r−1½F�eiθeiαÞ

∂F
∂v

−
1

m
∂
∂v (ðv − ωÞF) ¼ 0; ð3Þ

where the usual order parameter is r ¼ jr1j, with

rk½F� ¼
Z

Fðθ; v;ω; tÞeikθdθdvdω: ð4Þ

Unstable manifold expansion.—The incoherent station-
ary solution corresponds to each oscillator running at its
natural frequency, with the phases homogeneously distrib-
uted: Fðθ; v;ω; tÞ ¼ f0ðv;ωÞ ¼ gðωÞδðv − ωÞ=ð2πÞ. It is
easy to check that f0 is, indeed, a stationary solution of
Eq. (3). Increasing the coupling strength K, f0 changes
from stable to unstable. Our goal is to study the dynamics
of Eq. (3) in the vicinity of this bifurcation.
For this purpose, we first decompose Eq. (3) in a linear

and a nonlinear part, with F ¼ f0 þ f,

∂f
∂t ¼ Lf þN ½f�; ð5Þ

with

Lf ¼ −v
∂f
∂θ −

K
2im

ðr1½f�e−iθe−iα − r−1½f�eiθeiαÞ∂vf0

þ 1

m
∂
∂v (ðv − ωÞf); ð6Þ

N ½f� ¼ −
K
2im

ðr1½f�e−iθe−iα − r−1½f�eiθeiαÞ∂vf: ð7Þ

The precise study of the linear operator L is an important
building block in our nonlinear analysis, and we collect
below the main results concerning L (details are given in
the Supplemental Material [20]). Equation (3) is symmetric
with respect to rotations ðθ; v;ωÞ ¼ ðθ þ φ; v;ωÞ; if α ¼ 0
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and gðωÞ even, it is in addition symmetric with respect to
the reflections ðθ; v;ωÞ ¼ −ðθ; v;ωÞ [22]. In this Letter, we
take g even, and we restrict to the case of two unstable
eigenvectors. This is generically the case when the follow-
ing occurs. (i) α ≠ 0; in this case, there is a complex
unstable eigenvalue λ, and λ⋆ is also an unstable eigen-
value; (ii) α ¼ 0, and λ is real; in this case, it is twice
degenerate, associated with two eigenvectors. Hence, in
both cases, we will build a two-dimensional unstable
manifold. We leave for future studies the cases α ¼ 0, λ
complex, which leads to a four-dimensional unstable
manifold [22], as well as noneven gðωÞ distributions. L
is diagonal when expressed in the Fourier basis for the
phases. It is then easy to see that the discrete spectrum of L
is associated with the k ¼ �1 Fourier modes; that is, the
eigenvectors are proportional to e�iθ.
Ψ, the eigenvector of L associated with λ and k ¼ 1,

is given by Ψðθ; v;ωÞ ¼ ψðv;ωÞeiθ, with ψðv;ωÞ ¼
U0ðωÞδðv − ωÞ þ U1ðωÞδ0ðv − ωÞ, and δ0 stands for the
first derivative with respect to v of the Dirac distribution.
The expression for U0 and U1 is provided in the
Supplemental Material [20]. The dispersion relation from
which λ is computed reads

ΛðλÞ ¼ 1 −
Keiα

2m

Z
gðωÞ

ðλþ 1=mþ iωÞðλþ iωÞ dω ¼ 0:

ð8Þ

This dispersion relation can be recovered as the noiseless
limit of the one in Ref. [27], as it should. One can also
check that the limit m → ∞, K=m ¼ cst yields the Vlasov
dispersion relation with a cosine potential and gðωÞ as
the stationary velocity profile; the m → 0 limit yields the
standard Kuramoto dispersion relation.
We shall need the projection Π on the unstable eigen-

space V ¼ SpanðΨ;Ψ⋆Þ. For this purpose, we introduce
the adjoint operator L† defined through ðf1;Lf2Þ ¼
ðL†f1; f2Þ, where ðf1; f2Þ ¼ ∬ f⋆1f2dωdvdθ is a scalar
product. The adjoint eigenvector associated with the
eigenvalue λ is ~Ψðθ; v;ωÞ ¼ ~ψðv;ωÞeiθ=2π. We do not
know how to compute ~ψðv;ωÞ in closed form. However, in
the following computations, ~ψ only appears in scalar
products with delta functions δðv − ωÞ and their deriva-
tives; as a consequence, we only need to know
~ψ ðnÞðωÞ ≔ ∂n

v ~ψðω;ωÞ. The expression for ~ψ ðnÞðωÞ is pro-
vided in Ref. [20]. Then the projection acts on a function ϕ
as Π · ϕ ¼ ð ~Ψ;ϕÞΨþ ð ~Ψ⋆;ϕÞΨ⋆. With this knowledge of
the linear part L, we now proceed to the nonlinear analysis.
Following Ref. [21], we introduce the unstable manifold
M associated with the stationary solution f0. M is the set
of functions F that tend to f0 when t → −∞ and can be
seen as a nonlinear generalization of V. This is a manifold
of the same dimension as the linear unstable subspace V,
and it is clearly invariant by the dynamics. The tangent

space to M at f0 is V. Any element ϕ of M in a
neighborhood of f0 can be written as

ϕ ¼ AΨþ A⋆Ψ⋆ þH½A; A⋆�ðθ; v;ωÞ: ð9Þ

AΨþ A⋆Ψ⋆ is the projection of ϕ on V according to Π;
hence, Π ·H ¼ 0. Furthermore, H ¼ O(ðA; A⋆Þ2). For an
initial condition on M and assuming that the dynamics
remain in a region where Eq. (9) is valid, the whole
dynamics is parametrized by the function AðtÞ, which is
related to r by r ¼ 2πjAj þOðjAj3Þ. Our goal is then to
determine the evolution equation for A. H itself is, of
course, unknown and has to be determined at the same time
as the dynamical equation for A. The strategy is to build an
expansion in A and solve order by order. At linear order,
only the k ¼ �1 Fourier modes in θ enter. Since the
nonlinearity is quadratic, only the Fourier modes of order
k ¼ 0;�2 enter at leading nonlinear order. Hence, we write

dA
dt

¼ λAþ c3jAj2AþOðA5Þ;
HðA; A⋆Þ ¼ AA⋆h0;0ðv;ωÞ þ A2h2;0ðv;ωÞe2iθ

þ c:c:þ…; ð10Þ

where we have used the A ↔ −A and translation
symmetries (see Ref. [20]). Differentiating Eq. (9), we
get on one hand, dϕ=dt ¼ dA=dtðΨþ A⋆h0;0 þ 2Ah2;0Þþ
c:c:þOðA3Þ, and on the other hand, dϕ=dt ¼ λAΨþ
c:c:þ LH þN ðAΨþ A⋆Ψ⋆ þHÞ. Projecting on V yields
at linear order dA=dt ¼ λA. Projecting on V⊥ then allows
us to compute h0;0 and h2;0. The projection on V at cubic
order then yields c3. At the expense of increasingly intricate
computations, one could go on with this scheme; we have
stopped at c3. We give below the key results of the
computation, whereas all details are presented in Ref. [20].
Discussion.—Using the reduced dynamics (10) truncated

at order A3 provides essential qualitative information:
(i) The bifurcation is subcritical (i.e., with a jump in the
order parameter) if and only if Reðc3Þ > 0; (ii) in the
supercritical case, one obtains the asymptotic order param-
eter jAj∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−λR=Reðc3Þ
p

. We have to evaluate c3 close to
the bifurcation point, that is, when λR → 0. We find for
m > 0 with λI ¼ ImðλÞ [our hypothesis of a two-dimen-
sional unstable manifold ensures that Λ0ðiλIÞ ≠ 0]:

Reðc3Þ ∼
π3

2
mK3

gðλIÞ
λR

Re

�
eiα

Λ0ðiλIÞ
�
: ð11Þ

From this, the dramatic effect of the inertia m appears
clearly: it introduces into c3 a contribution diverging like
1=λR, which is the dominant one: the sign of s ¼
Re(eiα=Λ0ðiλIÞ) controls the type of bifurcation: sub- (resp.
super-) critical for s > 0 (resp. s < 0). For m ¼ 0, the
next order term, which does not diverge when λR → 0, is
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needed; the bifurcation is then controlled by s0 ¼
Re(Λ00ðiλIÞ=Λ0ðiλIÞ): sub- (resp. super-) critical for
s0 > 0 (resp. s0 < 0) (this generalizes to α ≠ 0 a result
of Ref. [23]; see Ref. [20].) Hence, any small m may either
turn a supercritical bifurcation at m ¼ 0 into a subcritical
one, or the other way around, turn a subcritical bifurcation
at m ¼ 0 into a supercritical one. While the first direction
illustrated in Fig. 1 was anticipated in Refs. [29,30], the
second direction is unexpected. Figure 2 provides an
example with a unimodal gðωÞ and α ≠ 0. Furthermore,
in the supercritical case, we predict the scaling law for the
asymptotic order parameter jAj∞ ∝ λR, and this is also
observed. If the distribution g is unimodal, we note that
sðα ¼ 0Þ > 0, so the bifurcation is always subcritical.
Finally, Eq. (11) makes clear that both the standard first
order Kuramoto (m ¼ 0, α ¼ 0) and Vlasov (m ¼ ∞,
K=m ¼ cst) limits are singular. In the first case, the divergent
term vanishes, and the bifurcation is controlled by the sign of
s0. One recovers the already known results: for a symmetric
unimodal g, s0ðα ¼ 0Þ < 0 and the bifurcation is supercriti-
cal, with standard scaling jAj∞ ∝

ffiffiffiffiffi
λR

p
. In the second case,

Eq. (11) diverges when m, K → ∞. Redoing the computa-
tions in this limit indeed yields (for α ¼ 0) c3 ∝ −ð1=λ3RÞ,
as found inRef. [21]. This leads to the “trapping scaling”well
known in plasma physics jAj∞ ∝ λ2R.
Numerics.—We present in this section precise numerical

simulations that fully support the above analysis. The time-
evolved system is obtained via a GPU parallel implemen-
tation of a fourth order Runge-Kutta scheme for Eq. (5)
[30]. The order parameter is computed by its standard
discrete definition [3]. For every simulation, we take

N ¼ 65 536, and a time step of Δt ¼ 10−3. The asymptotic
order parameter r is the average of jr1jðtÞ for
t ∈ ½1500; 2000�. In order to test our prediction on the
type of bifurcation, we start from an unsynchronized state
(drawing positions θi uniformly on a unit circle). The ωi
are sampled according to g, and the initial velocities are
vi ¼ ωi. We let the system evolve until t ¼ 2000 and
measure the averaged order parameter. Then we vary the
coupling constant K → K þ ΔK with ΔK ¼ 0.1 or 0.2 (or
smaller close to transitions) and reiterate the procedure; at
some point, the bifurcation towards synchronization is
observed. When K is large enough, we apply the same
procedure in the other direction, K → K − ΔK. Thus, we
are able to distinguish clearly a subcritical bifurcation (with
a characteristic hysteresis cycle) from a supercritical
bifurcation (with no hysteresis). In Fig. 1, we see how
the hysteretic cycle depends on the inertia m. For m ¼ 1,
there are two branches with r ≠ 0: these correspond to the
bistable behavior of the single oscillator dynamics in a
range of ω (see Ref. [17]); for m ¼ 0.5 and m ¼ 0.25, the
single oscillator dynamics is not bistable in the transition
region, and, accordingly, there is only one branch with
r ≠ 0. The bifurcation remains, nevertheless, clearly sub-
critical. In Fig. 2, inertia induces a supercritical transition;
Eq. (11) also correctly predicts the linear scaling of the
saturated state in this case. Finally, we note that in the
subcritical regime, the numerically observed Kc is some-
times lower than the prediction (3); this is presumably
related to strong finite size effects [33], especially in the
presence of inertia [15].
Conclusions.—We have constructed an unstable mani-

fold expansion for models of synchronization with inertia
and frustration, circumventing the problem of the continu-
ous spectrum on the imaginary axis. The singularities
appearing in the expansion may at first sight seem harmful,
but they actually control the system’s behavior in the
vicinity of the bifurcation and allow useful qualitative
and quantitative predictions. In particular, while synchro-
nization models tend to present complicated phase dia-
grams for which it is difficult to develop an intuition
[29,32], we have obtained simple criteria determining the
character of the transition. We note that since the unstable
manifold is not attractive, the reduced description could be
valid only for specific initial conditions; numerics show
that its validity is much wider than what might have been
expected. We remark that the bifurcation diagram of the
standard Kuramoto model (in particular, without inertia)
has been established rigorously very recently [34,35]. It is
tempting to relate this mathematical success to the absence
of singularities in the corresponding unstable manifold
expansion, although the exact relationship between these
facts is still unknown. Finally, the versatility of the method
suggests that, beyond the synchronization models, it can be
adapted to many different situations featuring bifurcations
with a continuous spectrum, the most important physical
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FIG. 2. Asymptotic r as a function of K for α ¼ 0.8, with
m ¼ 0 or m ¼ 0.5. The frequency distribution is a superposition
of two Lorentzians as in Ref. [32], Fig. 3: gðωÞ ¼ τg1þ
ð1 − τÞgδ, with τ ¼ 0.8, δ ¼ 0.075; g is unimodal. The inset
shows that s0ðα ¼ 0.8Þ > 0 (hence, discontinuous transition at
m ¼ 0) and sðα ¼ 0.8Þ < 0 (hence, continuous transition as soon
as m > 0).
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example being probably the bifurcations of the Vlasov
equation.
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