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We show how to implement topological or Thouless pumping of interacting photons in one-dimensional
nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space
and time. The interplay between the interactions and the adiabatic modulations enables robust transport of
Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model
and study its topological properties and its protection to noise. We conclude by a detailed study of an
implementation with existing circuit-QED architectures.
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Introduction.—In the third century B.C., Archimedes
figured out how to pump water up a hill using a rotating
screw simply by exploiting the laws of classical physics.
Two millennia later, Thouless proposed topological pump-
ing for the robust transport of quantum particles in 1D
periodic lattices by means of an analogous adiabatic and
cyclic deformation of the underlying Hamiltonian [1]. In
addition, he showed that the number of particles trans-
ported during one pump cycle is quantized and can be
related to a topological invariant known as the Chern
number [2]. As a consequence, the transport is robust
against small disorder and perturbation [3–8].
Recently, there have been experimental demonstrations of

such topological or “Thouless” pumping for noninteracting
particles using optical lattices [9,10] and waveguide arrays
[11,12]. Topological pumping in the case of interacting
systems remains relatively unexplored. Previous works have
theoretically explored related adiabatic quantum pumping in
quantumwires [13], quantumdots [14–16], and electrons in a
mesoscopic conductor [17]. However, the latter schemes do
not involve a lattice structure,which is essential for achieving
topological protection. In the case of interacting systems in a
1D lattice, topological pumping has been explored formally
in the bosonic Bose-Hubbardmodel with correlated hopping
and nearest-neighbor repulsion [18,19], and in interacting
spin systems [20].
In this Letter, we propose topological pumping of

interacting particles for the reliable transport of bosonic
Fock states in 1D lattices. This is qualitatively different
from the standard Thouless pumping which does not allow
transporting Fock states [3–12]. We study the robustness of
the transport against disorder for a range of parameters. In
addition, the mechanism we propose here can be realized in
a variety of quantum technology platforms such as ultra-
cold quantum gases [21], trapped ions [22], and interacting

photons in circuit QED [23–28]. Because of extended
usage of photonic Fock states in quantum information
processing [29], we demonstrate our proposal in the context
of nonlinear resonator arrays [30–33] and conclude with a
detailed study of a circuit-QED setup implementing our
proposal.
The system.—We consider a nonlinear resonator array

of size L implemented in circuit QED as discussed in
Ref. [34]. The array is described by the Bose-Hubbard
model with attractive interactions and spatially modulated
on-site energies

HðtÞ ¼
XL−1

m¼0

ωmðtÞn̂m − J
XL−2

m¼0

ðâ†mâmþ1 þ H:c:Þ

þ U
2

XL−1

m¼0

n̂mðn̂m − 1Þ; ð1Þ

where n̂m ¼ â†mâm and â†m, âm are bosonic creation and
annihilation operators, respectively [34]. In addition,
ωmðtÞ ¼ ω0 þ Δ cos ½2πm=3þ ϕðtÞ� is the frequency of
the resonator, Δ > 0 is a modulation amplitude, ϕðtÞ is a
time-dependent modulation phase, U < 0 is an attractive
Kerr nonlinearity, and J > 0 is the hopping strength. Since
the number of photons is conserved, the first termP

L−1
m¼1 ω0n̂m can be eliminated from Eq. (1). The modu-

lation phase is adiabatically swept in time as ϕðtÞ ¼
Ωtþ ϕ0, where Ω is the ramping speed, and ϕ0 is an
initial modulation phase. This sweeping is possible in
circuit QED, as the frequency of the resonator can be
tuned on the fly using a flux bias [25,27]. For simplicity, we
choose L to be an integer multiple of 3. Hence, the array
can be thought of as an array of trimers of size L=3 as it is
depicted in Fig. 1(a). For convenience, we introduce the
index l ∈ f0;…; L=3 − 1g to label the trimers. Since the
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modulation wavelength is also 3, the Hamiltonian that acts
on each trimer is identical. Later in the text, we will refer to
the three sublattices at positions 3l, 3lþ 1, and 3lþ 2
within the lth trimer as A, B, and C, respectively [see
Fig. 1(a)].
Our pumping protocol is shown in Fig. 1(b). It corre-

sponds to a loop in a 2D parameter space with U ¼ −J.
Our two varying parameters are the frequency differences
ωA − ωB and ωA − ωC between two resonators in a trimer,

where ωA¼ω0þΔcos½ϕðtÞ�, ωB¼ω0þΔcos½ϕðtÞþ2π=3�,
and ωC ¼ ω0 þ Δ cos½ϕðtÞ þ 4π=3�. In Ref. [39], we show
that for U ¼ −J this loop encloses the critical point when
ωA ¼ ωB ¼ ωC. We will later show that the spectrum along
this loop is gapped. As a result, the topology of the pump is
said to be invariant under deformation of this loop as long
as it encloses the critical point [2].
Topological transport of Fock states.—Let us begin by

considering three-photon Fock states within a given trimer,
i.e., j300il, j030il, and j003il. In the following, we will
show that at the right regime, an effective three-photon
hopping can be derived, allowing the three-photon Fock
states to be efficiently transported through the array.
To illustrate the above, let us decompose the

Hamiltonian as HðtÞ ¼ P
lH

l
0ðtÞ þ λV, where Hl

0ðtÞ ¼P
3lþ2
m¼3l ½Δ cos½2πm=3þ ϕðtÞ�n̂m þ ðU=2Þn̂mðn̂m − 1Þ� and

λV ¼ −J
P

mðâ†mâmþ1 þ H:c:Þ. In the case J ¼ 0, we
define the on-site energies of the three-photon Fock states
as Eμ

0ðtÞ ¼ hμjHl
0ðtÞjμil for μ ∈ f300; 030; 003g. Note that

the energies Eμ
0ðtÞ do not depend on the trimer index l. The

energies Eμ
0ðtÞ are depicted in Fig. 1(c1) as a function of

ϕðtÞ. When including a small but nonvanishing hopping
strength J ≪ Δ, the crossings in Fig. 1(c1) become anti-
crossings, as shown in Fig. 1(c2). This is due to an effective
three-photon hopping between two neighboring sites that
happens near an anticrossing (we outline the mechanism
below). As a result, the energy spectrum when 0 < J ≪ Δ
is separated into three gapped bands for ∀ϕðtÞ ∈ ½0; 2πÞ, as
depicted in Fig. 1(c2). The quantized transport of the three
photons can then be understood simply by adiabatically
following one of these bands [see Figs. 1(c2)and 1(d)].
To obtain the above picture, we derive the effective three-

photon hopping by first identifying relevant states near a
given anticrossing point. To do this, let us consider a
particular crossing point in Fig. 1(c1) when J ¼ 0, for
example, at ϕðt�Þ ¼ 2π=3. There, the two crossing bands
E300
0 ðt�Þ ¼ E030

0 ðt�Þ are far separated from the third one,
E003
0 ðt�Þ. Hence, when including a small hopping J ≪ Δ,

the relevant three-photon states in the lth trimer are j300il,
j030il, j210il, and j120il. We then note that when J ¼ 0,
the states j300il and j030il have the same on-site energies,
ϵ3 ¼ E300

0 ðt�Þ ¼ E030
0 ðt�Þ ¼ −3Δ=2þ 3U and so do the

states j210il and j120il with the on-site energy
ϵ2 ¼ −3Δ=2þU. Since ϵ2 − ϵ3 ¼ −2U, in the limit
0 <

ffiffiffi
3

p
J < −2U, one can do adiabatic elimination of

the intermediate states j210il and j120il, during the process
j300il → j210il → j120il → j030il. This is done by
expanding the Hamiltonian Hðt�Þ in

ffiffiffi
3

p
J=2U up to the

third order using the Schreffer-Wolff transformation [52].
As a result, an effective three-photon hopping process can
be derived as ~Hl

Jðt�Þ ¼ −J ðj300ilh030jl þ j030ilh300jlÞ,
where J ¼ J3=

ffiffiffi
2

p
U2 [39]. Similar analysis can be applied

for all anticrossing points in Fig. 1(c2). We stress here that

FIG. 1. (a) Depictions of the sublattices A, B, and C at the sites
3l, 3lþ 1, and 3lþ 2, respectively. (b) Pump cycle in the 2D
parameter space spanned by (ωA − ωB) and (ωA − ωC) for
U ¼ −J. It encircles the critical point at ωA ¼ ωB ¼ ωC labeled
as a red dot. A gray-dashed path is displayed as an example of a
topologically trivial path. (c1) On-site energies Eμ

0ðtÞ ¼
hμjHl

0ðtÞjμil as a function of the modulation phase ϕðtÞ. Different
bands μ ¼ 300, 030, 003 are labeled as blue, green, and orange,
respectively. Crossing points between two bands are labeled as
gray dots. (c2) Eigenenergies emerging in the presence of a small
photon hopping J ≪ Δ. As discussed in the text, near every
crossing point in (c1), an effective three-photon hopping can be
derived, which converts these points into the anticrossing points
shown in (c2) with the gap 2J ¼ ffiffiffi

2
p

J3=U2. As a result, the
quantized transport of the Fock states can then be understood by
adiabatically following one of the bands in (c2). (d) Illustration of
the quantized transport. Tp ¼ 2π=Ω is the pumping period. In the
path I, the state j300il is initialized at the highest band with
ϕð0Þ ¼ 0. The three photons hop from one site to another when
passing through each anticrossing point. Since in the upper band
there are three anticrossing points for ∀ϕðtÞ ∈ ½0; 2πÞ, after one
pump cycle, the three photons are pumped from j300il to
j300il−1. The transport corresponds to the effective Chern
number C ¼ 1. For path II, the transport has different topology
with C ¼ −2. The lowest band has the same topology as the
highest one.
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this perturbation does not work in the absence of inter-
actions, i.e., when U ¼ 0.
The three gapped bands in Fig. 1(c2) resulting from the

effective three-photon hopping are said to have different
topologies due to their distinct transport properties. For
example, as shown in Fig. 1(d), the states in the middle
band move in the opposite direction with twice the speed as
those in the upper band. We define the effective Chern
number C—a topologically invariant quantity for a given
band—as the number of trimers that the three photons pass
during one pump cycle, which is equivalent to the Wannier
center displacement [2]. Hence, the states in the highest and
the middle bands can be assigned with the Chern numbers
C ¼ þ1 and C ¼ −2, respectively. The sign indicates
whether the direction of motion is the same ðþÞ as or
opposite ð−Þ to that of the pump. [Recall that the modu-
lation wave Δ cosð2πm=3þ Ωtþ ϕ0Þ moves towards the
leftmost site m ¼ 0].
In Fig. 2(a), we numerically show the quantized transport

by plotting the density hn̂mi as a function of time. The
three-photon Fock state is initialized at the site m ¼ 60
(sublattice A) of an array of size L ¼ 120. Time evolution is
performed using time-evolving block decimation [53,54]
with parameters given in Ref. [39]. The parameters of
the Hamiltonian are Δ ¼ 10J, U ¼ −J, Ω ¼ 0.01J, and
ϕ0 ¼ 0. The density plot shows a clear steplike motion with
C ¼ 1, as expected.
One can also imagine filling each trimer l with the same

three-photon Fock states j300il, i.e., the unit-filling con-
dition [see Fig. 2(b)]. Because photons between neighbor-
ing trimers are always two sites apart, they are effectively
decoupled from each other throughout the evolution.
Hence, a similar quantized transport occurs for many-
photon states.

The quantized transport with C ¼ −2 is shown in
Fig. 2(c), where the initial modulation phase is changed
to ϕ0 ¼ π=2 while keeping the initial state the same as that
in Fig. 2(b). The motion is reversed with twice the speed
compared to the one in Fig. 2(b), as expected. To further
emphasize the topological nature of the transport, in
Fig. 3(a1) we also change our pumping scheme to the
one that does not enclose the critical point in the 2D
parameter space, while keeping the starting and the end
points the same as before. As shown in Fig. 3(a2), photons
following this path remain localized throughout the evo-
lution, corresponding to a topologically trivial transport
with C ¼ 0, as expected.
Robustness analysis.—The quantized transport discussed

here so far is protected by the energy gap proportional to
2J . Hence, it is robust against small perturbations. To
illustrate this, we add random noise to the system as
Hnoise ¼ η

P
mrmðtÞn̂m, where η is the noise amplitude,

and rmðtÞ ∈ ½0; 1� is a random number drawn differently
for each site at each time step. The parameters of the
Hamiltonian and the initial state are the same as in Fig. 2(a).
The center of mass (c.m.) of the three photons as a function
of time with an increasing η is shown in Fig. 3. It can be
seen that the quantized motion is robust against weak
perturbations, η≲ J. As the noise amplitude η becomes
comparable to the smallest energy gap, which in this case is
2J ∼ 1.4J, the c.m. is biased towards the rightmost site
(m ¼ L − 1). This is expected, as random noise introduces
coupling to states from other bands. As shown before, these

FIG. 2. Density plot hn̂mi as a function of time, illustrating a
quantized transport of a three-photon state. In (a) a three-photon
Fock state j3i is prepared at the sublattice A located at the middle
of an array of size L ¼ 120 (Δ ¼ 10J, ϕ0 ¼ 0, U ¼ −J,
Tp ¼ 2π=Ω, and Ω ¼ 0.01J). In (b) each sublattice A is filled
with the three-photon Fock state. We left five trimers near the
edges empty to avoid boundary effects during the evolution. The
density plot shows a clear steplike behavior in both cases. In
(c) the initial modulation phase is set at ϕ0 ¼ π=2, and the
ramping speed is Ωp ¼ 0.002J. As discussed in the text, this
results in a quantized transport in the reversed direction and twice
the speed of the pump. In (b) and (c) the local Hilbert space in the
numerics is truncated at the five-photon Fock state.

FIG. 3. (a1) Illustration of a topologically trivial pumping
scheme in the 2D parameter space. We fix ωA ¼ ω0 and vary
ωB and ωC as a square loop with the starting point
ðx0; y0Þ ¼ ½−Δ cosð2π=3Þ;−Δ cosð4π=3Þ�. The pumping period
Tp and the initial state are the same as those in Fig. 2(b).
(a2) Density plot showing the corresponding motion. (b) C.m.
displacement, Δx, of a three-photon state as a function of time
with the nontrivial pumping topology in the presence of random
noise. A black solid line corresponds to the perfect case with no
noise η ¼ 0. The parameters of the Hamiltonian and the initial
state are the same as those in Fig. 2(a). The plot shows that the
quantized motion is robust against weak perturbations, such that
the amplitude of the noise η is smaller than the smallest energy
gap 2J .
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states are transported in opposite directions. Therefore,
when η≳ J , the c.m. deviates from the ideal case
over time.
Circuit-QED implementation.—The localization due to

attractive interaction and large modulation Δ ≫ J in our
system allow signatures of topological pumping to be
visible with an existing finite-size array, as small as L ¼ 9
as implemented inRef. [26] [see Fig. 4(a) and, also, Ref. [39]
for more details on the implementation]. To show this, we
numerically solve the Lindblad master equation involving
realistic photon loss, which is expressed as

∂ρ
∂t ¼ −i½HðtÞ; ρ� þ 1

2T1

X

m

ð2âmρâ†m − fn̂m; ρgÞ; ð2Þ

where ρ is a density matrix, and T1 ¼ 20 μs is a photon
lifetime. We choose realistic parameters of the Hamiltonian
as Δ ¼ 0.4 GHz, Ω ¼ 2 MHz, J ¼ 40 MHz, and U ¼
−40 MHz. A 5% disorder is added to U to mimic the fact
that nonlinearities of Josephson junctions are different. Three
photons are initialized at the site m ¼ 6 with ϕ0 ¼ 0. Time
evolution is performed using the quantum trajectories [55]
with parameters given in Ref. [39]. The density and the
c.m. plots as a function of time are shown in Figs. 4(b1)
and 4(b), respectively. A clear steplike motion is observed in
both plots.

In conclusion, we have proposed a new mechanism of
topological transport of interacting particles. The inter-
actions enable robust transport of few-photon Fock states
against disorder. We have also discussed in detail how to
implement the above in existing circuit-QED architectures.
We note that our scheme here can be trivially generalized

to Fock states other than three. For example, by initializing
two photons per trimer and choosing appropriateU=J, Fock
states with a 2=3 filling can be transported. In addition,
although we have been focusing on the transport of Fock
states, entangled states are also created during the hopping
process and can be transported through by adjusting the
initial conditions. Hence, in the future it would be interesting
to characterize this entanglement, which emerges between
the two neighboring sites during population transfer, and
seek applications in quantum information processing.
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