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We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N
atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the
Jaynes-Cummings Hamiltonian and fully controllable by phase-modulated microwaves driving Rydberg-
dressed states. With currently feasible parameters, it is possible to generate states of ∼ten hyperfine qubits
in ∼1 μs, assuming a fast microwave phase switching time. The same control can be achieved with a
“dressed-ground control” scheme, which reduces the demands for fast phase switching at the expense of
increased total control time.
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Creating entangled many-body states is a central chal-
lenge of quantum information science. Beyond their intrin-
sic interest as highly nonclassical states, such states are a
resource for information processing protocols, including
measurement-based quantum computation [1], error correc-
tion [2], and metrology beyond the standard quantum limit
[3]. In neutral atoms, one powerful tool for generating such
states is the Rydberg blockade, where the electric dipole-
dipole interaction between high-lying Rydberg states sup-
presses the excitation of multiple Rydberg states at a time
[4,5]. This effect has been used to entangle pairs of trapped
atoms [6–8] and mesoscopic ensembles of atoms [9,10].
Here, we apply the Rydberg blockade to many-body

quantum state control. Specifically, we study symmetric
ensemble control, in which one produces a target entangled
state by applying a Hamiltonian that acts on every atom in
the ensemble equivalently. For an ensemble ofN qubits, this
corresponds to controlling a Hilbert space spanned by the
Dicke states, the symmetric subspace of N spin-1=2 par-
ticles, with total spin J ¼ N=2. The control and measure-
ment of Dicke states is more tractable since the symmetric
subspace grows linearly with the number of particles,
whereas in a general tensor-product space, the dimension
grows exponentially. This should allow us to develop
new tools for the control and measurement of many-body
systems. Dicke-state control has been demonstrated in ionic
[11] and photonic [12] systems, and proposed for Bose-
Einstein condensates [13]. A simple case of two-atom
symmetric control based on the Rydberg blockade was
demonstrated by Jau et al. to produce Bell states [8].
To achieve Dicke-state control we will employ an

isomorphism between the dynamics of the Rydberg-
blockaded symmetric atomic ensemble and the Jaynes-
Cummings model (JCM) [14–18]. The nonlinear dynamics
of the JCM have been well studied in cavity QED and
provide a powerful platform for quantum control [19–22].

To see this isomorphism, we consider a collection of N
atoms individually held in an array of optical dipole traps
[23]. For concreteness, we consider 133Cs atoms as
employed in Refs. [8,24,25] and encode qubits in the
clock states j0i≡ j6S1=2; F ¼ 3;MF ¼ 0i and j1i≡
j6S1=2; F ¼ 4;MF ¼ 0i separated by hyperfine energy
ℏωHF. We assume that the ensemble is uniformly illumi-
nated by a 318 nm laser, coupling j1i to jri≡
jnP3=2;MJ ¼ 3=2i in every atom with the same Rabi
frequency Ωr and detuning Δr (Fig. 1). Insofar as the
interactions are independent of the atoms’ spatial positions,
in second quantization, and in the rotating fame at the laser
frequency, the many-body Hamiltonian is

H ¼ E0a
†
0a0 þ ðE0 þ ℏωHFÞa†1a1

þ ðE0 þ ℏωHF − ℏΔrÞa†rar
þ ℏΩr

2
ða†ra1 þ a†1arÞ þ Vdd; ð1Þ

where a†i creates an atom in the state jii symmetrically
across the ensemble, so ½a†i ; aj� ¼ δi;j, the Bose commu-
tation relations. When the electric dipole-dipole interaction
Vdd is sufficiently strong across the whole ensemble, the
analog of the Pauli exclusion principle allows only one
Rydberg atom at a time, enforcing a perfect blockade. For
example, for n ¼ 84, with the van der Waals coefficient
C6=h ¼ −610 GHz μm6 [24], and for Ωr=2π ¼ 5 MHz,
the blockade radius is rB ≡ ðC6=ℏΩrÞ1=6 ≈ 7.04 μm.
A 3 × 3 square array of nine atoms in dipole traps separated
by 2 μm is safely blockaded. For these atoms, the dipole
blockade thus effectively fermionizes the Rydberg state,
and its creation operator now obeys an anticommutation
relation: ar → cr, fc†r ; crg ¼ 1. Making the Jordan-Wigner
transformation from fermionic to Pauli operators, since we
have one “mode,” cr → σ−. Taking E0 ¼ 0 and rewriting
Eq. (1) in terms of these operators gives
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H ¼ HJC ¼ ℏωHFa
†
1a1 þ ℏω0σþσ− þ ℏgðσþa1 þ a†1σ−Þ;

ð2Þ

where ℏω0 ¼ ℏωHF − ℏΔr and g ¼ Ωr=2. The dynamics of
the many-body state is described by the familiar Jaynes-
Cummings (JC) Hamiltonian [14]. Here, the presence or
absence of a Rydberg excitation plays the role of the two-
level atom in a conventional cavity QED setting, and the
number of atoms in j1i takes the place of photons as the
system’s bosonic degree of freedom.
Under this mapping, the bare states of the JCM are

symmetric superpositions of n atoms in j1i, with the
remaining N − n atoms distributed between j0i and jri as

jg; ni≡ a†n1 a†N−n
0 j0i ¼ fj0i⊗N−nj1i⊗ngsym; ð3Þ

je; ni≡ c†ra
†n
1 a†N−n−1

0 j0i ¼ fj0i⊗N−n−1j1i⊗njrigsym: ð4Þ

We recognize these states also as Dicke states, or eigen-
states of a collective spin, with J ¼ N=2, N − 1=2 for
the ground and excited manifolds, respectively. We denote
the Rydberg-dressed states fj~g; ni; j~e; n − 1ig with ener-
gies E�;n ¼ −ℏΔr=2� ðℏ=2ÞsgnðΔrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nΩ2
r þ Δ2

r

p

that re-
present the well-known JC ladder.
We quantify the entangling power of the JC Hamiltonian

by the nonlinear shift of the dressed states

κ ¼ h~g; 2jHJCj~g; 2i − 2h~g; 1jHJCj~g; 1i: ð5Þ

In the weak dressing limit, jΔrj ≫ Ωr, κ ≈ −Ω4=8Δ3
r , and

the nonlinearity of HJC is fully described by the two-body
coupling κ according to

h~g; njHJCj~g; ni − nh~g; 1jHJCj~g; 1i ≈ ðn2 − nÞ κ
2
: ð6Þ

For our atomic ensemble, on the ground manifold, the
Hamiltonian is then a quadratic function of the collective
spin

HðgÞ
JC ¼ N

2
ℏωHF þ

�

ℏωHF þ
ℏΩ2

r

4Δr
þ N

ℏκ
2

�

Jz þ
ℏκ
2
J2z :

ð7Þ

This describes the one-atom light-shift plus entangling
two-atom interactions that yield a one-axis-twisting
Hamiltonian [26]. This Hamiltonian produces cat states
when applied to a spin coherent state, e−iκTJ

2
z=2ðj0iþ

j1iÞ⊗N ¼ e−iπ=4ðj0i⊗N þ ij1i⊗NÞ, when T ¼ π=κ [27,28].
We endeavor to go beyond cat states, employing quan-

tum control to generate arbitrary target states in the ground
Dicke subspace, jΨtargeti ¼

P

N
n¼0 cnjg; ni. In the context of

cavity QED, such states correspond to the atom in jgi and a
nonclassical state of the field, with up to N photons. The
nonlinearity of the JCM provides numerous handles for
achieving this with various degrees of control [19–22],
Here, we show that the tools of optimal control can be used
to generate fast state-to-state maps producing arbitrary
target states.
In the setting of optimal control we consider a time-

dependent Hamiltonian of the form HðtÞ ¼ HJCþ
Hc½ϕðtÞ�, where the control Hamiltonian Hc is a functional
of the waveform ϕðtÞ. Through standard techniques, one
can determine if the system is controllable on a Hilbert
space of dimension d, meaning that there exists a ϕðtÞ such
that HðtÞ can generate any unitary map in the group SUðdÞ
after some time T. For our system, the total Hilbert space is
H ¼ HðgÞ

J¼N=2 ⊕ HðeÞ
J¼ðN−1Þ=2, corresponding to the ground

or excited manifolds of the JCM with up to N excitations.
The Hilbert space and control Hamiltonians for our

system bear a close resemblance to the control of the
magnetic sublevels of the hyperfine spins in ground-state
alkali-metal atoms, as employed in the seminal experiments
of Jessen [29,30]. There, the combination of phase-modu-
lated Larmor precession that generates SU(2) control on the
spins with pairwise couplings between the sublevels of the
two manifolds is sufficient for arbitrary control [31]. Taking
a similar strategy here, the couplings between the two
manifolds are achieved by the Rydberg laser. The arbitrary
SU(2) control on each of the ground and excited manifolds
corresponds to driving the system’s bosonic degree of
freedom in the JCM. We can achieve this because, unlike a
true harmonic oscillator, the atomic system is finite dimen-
sional. Our control Hamiltonian is thus a microwave (or
two-photon Raman transition) coupling j0i to j1i in each
atom. The Rabi frequency and detuning are fixed at Ωμw
and Δμw ¼ ωμw − ωHF, respectively, but the microwave’s
phase can vary as a function of time. Assuming the
microwave illuminates the entire ensemble symmetrically,
in the frame rotating at the microwave frequency, the
control Hamiltonian is

FIG. 1. (a) Basic level structure for the three-level atom: a qubit
is encoded in the ground hyperfine states, and logical j1i is
optically coupled to a Rydberg state, while logical j0i is far off
resonance and effectively uncoupled. (b) Bare states for N atoms,
symmetrically coupled, under a perfect blockade. (c) N-atom
dressed states, exhibiting the nonlinear JC ladder energy-level
structure. Full Hilbert space control performs best when the
microwave is tuned near resonance with the bare j0i ↔ j1i
transition (solid arrows), while dressed-ground control performs
best when the microwave is tuned near the dressed-ground state
transitions (dotted arrows).
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HcðtÞ ¼
ℏΩμw

2
½cosϕðtÞJx þ sinϕðtÞJy�− ℏωμw

�

Jz þ
N
2

�

;

ð8Þ

where ϕðtÞ is the time-dependent phase. HcðtÞ generates
arbitrary SU(2) rotations of the ground and excited mani-
folds. Analogous to Ref. [31],HðtÞ ¼ HJC þHcðtÞ renders
the system fully controllable, i.e., one can generate an
arbitrary unitary map on the full Hilbert space (see the
Supplemental Material [32]).
Insofar as our system is controllable, we know there

is always some (nonunique) waveform ϕðtÞ that will
generate any jΨtargeti in the Dicke subspace from an initial
fiducial state. We consider here control waveforms con-
sisting of sequences of s “phase steps” of length Δt, for a
total run time of T ¼ sΔt, as in Ref. [29]. The range of
possible control waveforms can be parametrized by an
s-dimensional vector ~ϕ. We take as our fiducial state
jΨ0i ¼ jg; 0i. Turning on the Rydberg laser dresses the
remaining eigenstates in the JC ladder, and control is
performed in the dressed basis. The target state of the
control is thus j ~Ψtargeti ¼

P

ncnj~g; ni. After the control
sequence, one would adiabatically undress the atom to
achieve the target state in the bare ground Dicke subspace.
We seek a ~ϕ such that the fidelity of the output

with the target state, F ð~ϕÞ ¼ jh ~ΨtargetjUð~ϕ; TÞjΨ0ij2,
is sufficiently high. We find ~ϕ with the well-known
GRAPE gradient ascent algorithm [34]. The results are
illustrated in Fig. 2 for a six-atom ensemble. The choice
of optimal parameters such as laser or microwave power and
detuning will depend on fundamental sources of error such
as decoherence as well as practical experimental concerns.
In particular, it is desirable to minimize the runtime and
complexity of our protocol, so we typically seek the
minimum T and s needed for high-fidelity control. It takes
2d − 2 real numbers to specify a d-dimensional target pure
state, which puts a lower bound on s. ForN atoms including
both ground and Rydberg symmetric states, this gives
s ≥ 4N. In practice, we find that this inequality can often
be saturated. More heuristically, we can predict that the
“quantum speed limit” is set by T ≳ π=κ, the minimum time
required to generate a cat state from a separable state based
on the one-axis twisting Hamiltonian, as discussed above.
Whether this bound can be saturated depends on the choice
of experimental parameters.
To achieve optimal fidelities, we wish to perform control

in the shortest possible time compared with our system’s
decoherence time. Decoherence due to photon scattering,
occurring at a rate γ, is of particular concern, so maximizing
κ=γ is an important goal. Since κ scales as Ω4

r=Δ3
r in the

weak dressing regime, it is highly sensitive to the power
and detuning of the Rydberg laser. By contrast, γ scales as
Ω2

r=Δ2
r , so κ=γ ∝ Ω2

r=Δr increases with increased laser
power and decreased detuning. Based on this, increasing
our dressing strength is a winning strategy in the fight

against decoherence, and has the added benefit of reducing
the total run time. This suggests that maximum laser power,
at or near resonance, is the best choice of parameters.
No matter how short the control time is in principle, we

must still have s phase steps, and quickly switching a
microwave’s phase is not trivial. With a resonant laser
power that yields a Rabi frequency of a few megahertz
and ∼10 atoms, the required Δt per phase step can easily
shrink to tens of nanoseconds or less. The demands on
the microwave switch time are even more strict, since the
phase must change quickly enough to preserve the
piecewise-constant approximation of ϕðtÞ. The number
of steps in the control waveform, then, is a primary limiting
factor in the speed and feasibility of this protocol. Once the
control time is limited by experimental restrictions on Δt
rather than by κ, increasing κ is no longer beneficial;
stronger dressing will only increase γ and other sources of
error without any offsetting benefit of control speed. On the
other hand, as long as κ is the limiting factor, increased
dressing strength is advantageous as per the reasoning
above. The optimal parameter regime, therefore, is highly
dependent on the particulars of the experiment: Δr should
be large enough to make the two speed limits match, if
possible, but no higher.
Since phase switching requirements limit the speed of

our protocol, control could be significantly accelerated by
reducing the number of phase steps needed. This can be
achieved if we can adiabatically eliminate the dressed-
excited states, and restrict the dynamics to the dressed-
ground manifold, the Dicke subspace of interest. In this
case the dimension of the control Hilbert space is cut in

FIG. 2. Simulated control fidelities to produce a six-atom cat
state in the dressed basis, starting from jg; 0i, as a function of
Rydberg laser detuning Δr and run time T, using s ¼ 25 phase
steps. For any Δr, there is a minimum control time above which
the fidelity is arbitrarily close to 1. As Δr increases, κ decreases
and the minimum control time gets longer. Infidelities shown here
are due solely to the quantum speed limit; decoherence is not
included in the simulations.
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half, and we need only 2N parameters to specify a target in
it. We clearly see that this is possible in the far off
resonance limit. Then, the JC Hamiltonian on the ground
manifold takes the form of a quadratic light shift, Eq. (6).
This, together with the SU(2) control generated by the
microwaves renders the qudit J fully controllable
on SUð2J þ 1Þ ¼ SUðN þ 1Þ.
More generally, we return to Eq. (8), describing the

effect of coupling induced by the microwave or Raman
transition. In the bare basis the microwave couples j0i to j1i
without acting on jri, so he;mjHμwjg; ni ¼ 0. By contrast,
the dressed Rydberg states j~e; ni have some jg; ni charac-
ter, so the microwave coupling between the dressed-
ground and Rydberg states is nonzero. In the weak
dressing regime we can approximate the magnitude of this
coupling as h~e;mjHμwj~g; ni ≈ sinðθn=2Þhg;mjHμwjg; ni≈
ð ffiffiffi

n
p

Ωr=2jΔrjÞhg;mjHμwjg; ni. The effective Rabi rate is
suppressed by an order of Ωr=Δr for dressed ground-
excited coupling compared to dressed ground-ground
couplings. Excitation is also suppressed by micro-
wave detuning. The saturation parameter is on the
order of Ω2

μw=Δ2
r . Combining these suppressing factors,

we find that the microwave will approximately preserve
the dressed-ground population as long as

ffiffiffiffi

N
p

ΩrΩ2
μw=

Δ3
r ≪ 1. Under this condition, we find that dressed-ground

control can be performed in 2N phase steps, as expected.
Because this condition requires a large Δr, it goes hand in
hand with a small κ, so ground manifold control is much
slower than full Hilbert space control if the phase steps are
allowed to be arbitrarily short. Whether the trade-off
between κ and s is worthwhile will depend on the N
and the minimum Δt in a given experiment.
Dressed-ground and full Hilbert space control are

optimized with qualitatively different choices of microwave
and laser parameters. When we control the whole Hilbert
space, the system traverses both ground and excited states
to get to its destination, so all states must be coupled
strongly to each other. Since the light shift provides a gap
between the ground and Rydberg manifolds and is of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
r þ Δ2

r

p

, Ωμw needs to be at least that large to strongly
drive both transitions at once. Both to relax this condition
and to maximize the interaction strength, Δr should be kept
small compared to Ωr. The microwave resonance should
also be tuned approximately halfway between the ground
and Rydberg states in the rotating frame (Δμw ≈ Δr=2),
so that all manifolds are roughly equally coupled [see
Fig. 1(c)]. If these conditions are not met, population
transfer between the ground and Rydberg manifolds will be
slow compared to intramanifold transfer, and control can
be bottlenecked by the population getting “stuck” in the
Rydberg manifold for extended periods.
On the other hand, dressed-ground control relies on the

assumption of adiabatic elimination of the Rydberg mani-
fold, so the parameters should be chosen to minimize the
coupling between the ground and excited manifolds. Ωμw

should be small compared to the light shift gap, and a large
Δr makes this easier to accomplish. Likewise, the micro-
wave should be tuned near resonance with the transitions
between dressed-ground states to allow strong dressed
ground-ground coupling with minimal dressed ground-
excited coupling. The microwave Rabi frequency also
should be large compared to κ to ensure that off resonant
driving to the excited dressed states is negligible over the
entire control time. Thus, Ωμw should scale inversely with
Δr. If these conditions are not met, a significant population
can leak into the dressed-excited manifold, where 2N free
parameters are no longer enough to bring it back to the
dressed-ground manifold. Dressed-ground and full Hilbert
space control thus provide two complementary methods
that function well in different regimes. The two methods
produce waveforms, each optimal for its respective param-
eter regime, that reach the same destination in Hilbert space
but take qualitatively different paths to get there. This is
illustrated in Fig. 3, which shows how both types of control
can be used to produce a seven-atom cat state. In both cases
we employ the JCM (2), plus microwave control. Fast full
Hilbert-space control is achieved in 1 μs with phase steps

FIG. 3. Mapping the seven-atom spin coherent state ðj0i þ
j1iÞ⊗7=

ffiffiffiffiffi

27
p

to the cat state ðj0i⊗7 þ j1i⊗7Þ= ffiffiffi

2
p

. The line plots
show the microwave phase ϕðtÞ found via optimal control, and
the bar charts show the real part of the 15 × 15 density matrix at
various snapshots in time. (a) Full Hilbert space control:
Ωr=2π ¼ 5 MHz, Δr=2π ¼ 2.5 MHz, Ωμw=2π ¼ 12.5 MHz,
and Δμw=2π ¼ 1.25 MHz. All 15 dressed states are traversed
during control, so 4N ¼ 28 phase steps are needed. (b) Dressed-
ground control: Ωr=2π ¼ 5 MHz, Δr=2π ¼ 15 MHz,
Ωμw=2π ¼ 100 kHz, and Δμw=2π ¼ −400 kHz. The population
remains in the eight dressed-ground states, so only 2N ¼ 14
phase steps are needed, but weaker Rydberg coupling reduces κ
by more than an order of magnitude with a commensurate
increase in run time.
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of 35.7 ns; dressed-ground state control requires 25 μs but
with phase steps of 1.79 μs.
Finally, all of the analysis in this work assumed a

perfectly known model Hamiltonian and neglected
decoherence and experimental noise. Of particular impor-
tance, our JCM requires a perfect blockade. For the
parameters considered here, this limits us to consider
ensembles with ∼10 atoms, though employing Rydberg
states at higher principle quantum numbers, or by packing
atoms closer together in an optical lattice, one can reach
∼100 atoms with a perfect blockade as seen in recent
experiments [35]. Fundamental decoherence occurs via
spontaneous decay of the Rydberg state. While the atomic
lifetimes are long compared to the control times considered
here, experiments show shorter coherence times that are
still unexplained [35]. Reducing this decoherence will be
essential to achieve high fidelity control. Technical noise
includes sensitivity to background electric fields, which can
be managed with a proper experimental approach [24,25].
Other technical challenges include uncertainties in the
parameters of the Hamiltonian including the Rabi frequen-
cies and detunings. These may be mitigated with the
techniques of robust control, which have been an essential
tool to achieve the high fidelity control of qudits [30].
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