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The monodromy relations in string theory provide a powerful and elegant formalism to understand some
of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality
has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field
theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we
extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour
deformation argument of the open string diagram integrands, leads to new identities that relate planar and
nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any
multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two
loops, we check our formulas by unitarity in the case of the four-pointN ¼ 4 super-Yang-Mills amplitude.
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The search for the fundamental properties of the inter-
actions between elementary particles has been the driving
force to uncover basic and profound properties of scattering
amplitudes in quantum field theory and string theory.
In particular, the color-kinematic duality [1] has led to
tremendous progress in the evaluation of loop amplitudes in
gauge theories [2–14]. One remarkable consequence of this
duality is the discovery of unsuspected kinematic relations
between tree-level gauge theory amplitudes [1], generated
by a few fundamental relations [15–19].
The monodromies of the open string disc amplitudes

[15,16] did provide a rationale for the kinematic relations
between amplitudes at tree-level in gauge theory. However,
while the color-kinematics duality has been successfully
implemented up to the fourth loop order in field theory
[3,4], there is not yet a systematic understanding of its
validity to all loop orders. It is therefore natural to seek a
higher-loop generalization of the string theory approach to
these kinematic relations.
In this Letter we generalize the tree-level monodromy

construction to higher-loop open string diagrams (world
sheets with holes). This allows us to derive a new relation
between planar and nonplanar topologies of graphs in
string theory. The key ingredient in the construction relies
on using a representation of the string integrand with a loop
momentum integration. This is crucially needed in order to
be able to understand zero mode shifts when an external
state jumps from one boundary to another. Furthermore,
just like at tree level, the construction does not depend on
the precise nature of the scattering amplitude nor the type of
theory (bosonic or supersymmetric) considered.
The relations that we obtain in field theory emanate from

the leading and first order in the expansion in the inverse
string tension α0. At leading order, we find identities
between planar and nonplanar amplitudes. At the next

order, stringy corrections vanish and we find the loop
monodromy relations. They are relations between inte-
grands up to total derivatives, that involve both loop and
external momenta. Upon integration, this gives relations
between amplitude-like integrals with extra powers of loop
momentum in the numerator.
At one loop, our string theoretic construction reproduces

the field theory relations of Refs. [20–22]. In observing
how the loop momentum factors produce cancellations of
internal propagators, we see that Bern-Carrasco-Johansson
(BCJ) color-kinematic representations for numerators [1]
satisfy the monodromy relation at the integrand level. The
generality of our construction leads us to conjecture that
our monodromies generate all the kinematic relations at any
loop order.
We conclude by showing how our construction extends

to higher loops in string theory. In particular, we write the
two-loop string monodromy relations. The field theory
limit is subtle to understand in the general case, but we
provide a proof of concept with an example in N ¼ 4
super-Yang-Mills theory at four-point two-loop, which we
check by unitarity. We leave the general field theory
relations for future work.
Monodromies on the annulus.—One-loop n-particle

amplitudes A in oriented open-string theory are defined
on the annulus. They have a UðNÞ gauge group and the
following color decomposition [23]:

Aðfϵi; ki; aigÞ ¼ gnsπn−1
Xn
p¼0

X
α∪β∈Sp;n

Trðλaαð1Þ � � � λaαðpÞ ÞTrðλaβðpþ1Þ � � � λaβðnÞ ÞAðαjβÞ: ð1Þ

The summation over Sp;n of the external states distributed
on the boundaries of the annulus is over all permutations
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modulo cyclic reordering and reflection symmetry. The
quantities ki, ϵi, and λa are the external momenta, polari-
zations and color matrices in the UðNÞ fundamental
representation, respectively. Planar amplitudes are obtained
for p ¼ 0 or p ¼ n with Trð1Þ ¼ N. The color-stripped
ordered n-gluon amplitude AðαjβÞ take the following
generic form in D dimensions

AðαjβÞ ¼
Z

∞

0

dt
Z
Δαjβ

dn−1ν
Z

dDle−πα
0tl2−2iπα0l·

P
n
k¼1

kiνi

×
Y

1≤r<s≤n
fðe−2πt; νr − νsÞ × e−α

0kr·ksGðνr;νsÞ; ð2Þ

where t ∈ R is the modulus of the annulus and the νi’s are
the location of the gluons insertions on the string world
sheet—one of them is set to it by translation invariance. The
loop momentum lμ is defined as the average of the string
momentum ∂Xμ [24];

lμ ¼
Z

1
2

0

dν
∂XμðνÞ
∂ν : ð3Þ

The domain of integration Δαjβ is the union of the ordered
sets fJmðναð1ÞÞ < � � � < JmðναðpÞÞg for ℜeðνiÞ ¼ 0 and
fJmðνβðpþ1ÞÞ > � � � > JmðνβðnÞÞg for ℜeðνiÞ ¼ 1

2
.

We will show that the kinematical relations at one loop
arise exclusively from shifts in the loop-momentum-
dependent part and monodromy properties of the nonzero
mode part of the Green’s function in Eq. (2)

Gðνr; νsÞ ¼ − log
ϑ1ðνr − νsjitÞ

ϑ1
0ð0Þ : ð4Þ

We refer to the appendix for some properties of the
propagators between the same and different boundaries.
The function fðe−2πt; νr − νsÞ contains all the theory-

dependence of the amplitudes. The crucial point of our
analysis is that it does not have any monodromy; therefore,
the relations that we obtain are fully generic. This function
is a product of partition functions, internal momentum
lattice of compactification to D dimensions, and a pre-
scribed polarization dependence [23,25–27]. The latter is
composed of derivatives of the Green’s function. None of
these objects have monodromies: that is why the precise
form of f does not matter for our analysis. This property
carries over to higher-loop orders.
Local and global monodromies: Let us consider the

nonplanar amplitude Að1;…; pjpþ 1;…; nÞ, but where
we take the modified integration contour C of Fig. 1 for ν1.
The integrand being holomorphic, in virtue of Cauchy’s
theorem, the integral vanishes:

I
C
dν1

Z
∞

0

dDle−πα
0tl2−2iπα0l·

P
n
k¼1

kiνie−iπα
0l·k1ν1

×
Yn
r¼2

fðe−2πt; ν1 − νrÞe−α0k1·krGðν1;νrÞ ¼ 0: ð5Þ

Each separate portion of the integration corresponds to a
different ordering and topology. The portions along the
vertical sides cancel by periodicity of the one-loop integral
(cf. appendix). We are thus left with the contributions
from the boundaries ℜeðν1Þ ¼ 0 and ℜeðν1Þ ¼ 1

2
. When

exchanging the position of two states on the same boun-
dary, the short distance behavior of the Green’s function
Gðν1; ν2Þ≃ − logðν1 − ν2Þ implies

Gðν1; ν2Þ ¼ Gðν2; ν1Þ � iπ; ð6Þ

with −iπ for a clockwise rotation and þiπ for a counter-
clockwise rotation. Thus, on the upper part of the contour in
Fig. 1, exchanging the positions of two external states leads
to a phase factor multiplying the amplitude

Að12 � � �mjmþ1� ��nÞ→eiπα
0k1·k2Að21 � � �mjmþ1 �� �nÞ:

ð7Þ

On the lower part of the contour in Fig. 1, the phases come
with the same sign due to an additional sign from ϑ2 in
Eq. (A2). For external states on different boundaries, the
Green’s function involves the even function ϑ2ðνr − νsÞ and
the ordering does not matter (cf. the appendix).
The main difference with the tree-level case arises from

the global monodromy transformation when a state moves
from one boundary to the other, ν1 → ν1 þ 1

2
. This produces

a new phase expð−iπα0l · k1Þ in the integrand

Að12 � � � nÞ → Að2 � � � nj1Þ½e−iπα0l·k1 �

≔
Z

∞

0

dt
Z
Δ2���nj1

dn−1ν
Y

1≤r<s≤n
fðe−2πt; νr − νsÞe−α0kr·ksGðνr;νsÞ

×
Z

∞

0

dDle−iπα
0l·k1e−πα

0tl2−2iπα0l·
P

n
k¼1

kiνi : ð8Þ

On nonorientable surfaces the propagator is obtained by
appropriate shifts of the Green’s function [Eq. (4)] accord-
ing to the effects of the twist operators [25]. The local

FIG. 1. The ν1 contour integral (red) vanishes. The two
boundaries (black) have opposite orientation.
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monodromies are the same because they only depend on
the short distance behavior of the propagator, and global
monodromies are obtained in an immediate generalization
of our construction.

Open string relations: We can now collect up all the
previous pieces. Paying great care to signs and orientations,
according to what was described, the vanishing of the
integral along C gives the following generic relation:

Að1; 2;…; pjpþ 1;…; nÞ þ
Xp−1
i¼2

eiα
0πk1·k2���iAð2;…; i; 1; iþ 1;…; pjpþ 1;…; nÞ

¼ −
Xn
i¼p

ðeiα0πk1·kpþ1���iAð2;…; pjpþ 1;…; i; 1; iþ 1;…; nÞ½e−iπα0l·k1 �Þ ð9Þ

where the bracket notation was defined in Eq. (8) and we
set k1…p ≔

Pp
i¼1 ki. In particular, starting from the planar

four-point amplitude we find the following formula:

Að1234Þ þ eiπα
0k1·k2Að2134Þ þ eiπα

0k1·ðk2þk3ÞAð2314Þ
¼ −Að234j1Þ½e−iπα0l·k1 �: ð10Þ

We also find, starting from a purely planar amplitude

ð−1Þjβj
X

γ∈α⊔⊔β

Ys
a¼1

Yr
b¼1

eiπα
0ðαa;βbÞAðγ1 � � � γrþsnÞ

¼ Aðα1 � � � αsnjβr � � � β1Þ
�Yr
i¼1

e−iπα
0l·kβi

�
ð11Þ

where now we integrate the vertex operators with ordered
position Jmðνβ1Þ ≤ � � � ≤ JmðνβrÞ along the contour of
Fig. 1. The sum is over the shuffle product α⊔⊔β and the
permutation β of length jβj, and ðαi; βjÞ ¼ kαi · kβj if
JmðνβjÞ > JmðναiÞ in γ and 1 otherwise. The phase
factors with external momenta are the same as at tree
level: the new ingredients here are the insertions of loop-
momentum dependent factors inside the integral.
Note that some of our relations involve objects like

Að2 � � � nj1Þ that seemingly contribute in Eq. (1) only if the
state 1 is a color singlet. However, our relations involve
color-stripped objects and are, therefore, valid in full
generality. Note also that our relations are valid under
the t integration; thus, they are not affected by the dilaton
tadpole divergence at t → 0 [25].
We have thus shown that the kinematic relations [Eq. (9)]

relate planar and nonplanar open string topologies, which
normally have independent color structures. This is the
one-loop generalization of the string theory fundamental
monodromies that generates all amplitude relations at
tree-level in string theory [15,16]. Thus, we conjecture

our one-loop relations, Eq. (9), written for all the permu-
tations of the external states, generate all the one-loop
oriented open string theory relations. Let us now turn to the
consequences in field theory.
Field theory relations.—Gauge theory amplitudes are

extracted from string theory ones in the standard way. We
send α0 → 0 and keep fixed the quantity α0t that becomes
the Schwinger proper-time in field theory. We also set
JmðνÞ ¼ xt, with 0 ≤ x ≤ 1. The Green’s function of
Eq. (4) reduces to the sum of the field theory worldline
propagator x2 − jxj and a stringy correction

GðνÞ ¼ tðx2 − jxjÞ þ δ�ðxÞ þOðe−2πtÞ: ð12Þ

for details see Appendix. (In a bosonic open string one
would need to keep to the terms of the order expð−2πtÞ
because of the Tachyon.) At leading order in α0, open string
amplitudes reduce to the usual parametric representation of
the dimensional regulated gauge theory amplitudes [28,29].
(See also Refs. [30–32] for equivalent closed string
methods.) All the monodromy phase factors reduce to 1
and from Eq. (11) we recover the well-known photon
decoupling relations between nonplanar and planar ampli-
tudes [33], with βT ¼ ðβr;…; β1Þ,

AðαjβTÞ ¼ ð−1Þjβj
X

γ∈α⊔⊔β
AðγÞ: ð13Þ

This is an important consistency check on our relations.
At the first order in α0 we get contributions from

expansion of the phase factors but as well potential ones
from the massive stringy mode coming from δ�ðxÞ. The
analysis of the appendix of Ref. [34] shows that this
contributes to next order in α0, which, importantly, allows
us to neglect it here. Therefore, the field theory limit of
Eq. (9) gives a new identity

Xp−1
i¼2

k1 · k2���iAð2;…; i; 1; iþ 1;…; pjpþ 1;…; nÞ þ
Xn
i¼p

k1 · kpþ1���iAð2;…; pjpþ 1;…; i; 1; iþ 1;…; nÞ

¼
Xn
i¼p

Að2;…; pjpþ 1;…; i; 1; iþ 1;…; nÞ½l · k1�: ð14Þ
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These relations are the one-loop equivalent of the funda-
mental monodromy identities [17–19] that generates all the
amplitude relations at tree level.
In particular, using Eq. (13), we obtain the relation

between planar gauge theory integrands with linear power
of loop momentum

Að1 � � �nÞ½l · k1� þ Að21 � � � nÞ½ðlþ k2Þ · k1� þ � � �
þ Að23 � � � ðn − 1Þ1nÞ½ðlþ k23…n−1Þ · k1� ¼ 0: ð15Þ

These are the relations derived in Refs. [20–22]: this
constitutes an additional check on our formulas.
Let us now analyze the effect of the linear momentum

factors at the level of the graphs. At this point we pick
any representation of the integrand in terms of cubic
graphs only and the field theory limit defines the loop
momentum as the internal momentum following immedi-
ately the leg n. (This is checked by matching with the
usual definition of the Schwinger proper times.) We
then rewrite the loop momentum factors as differences
of propagators. Hence, each individual graph with numera-
tor nG produces two graphs with one fewer propagator, e.g.,

ð16Þ

Then, there always exist another graph G0 that will produce
one of the two reduced graphs as well, with a different
numerator nG0. In the previous example, it would be the
21345 pentagon for the massive box with 1,2 corner.
Finally, reduced graphs also arise directly from string
theory, when vertex operators collide [29]. In Eq. (15),
these always appear in such combinations of two graphs,
say G1 and G2;

ð17Þ

The color ordered 3-point vertex is antisymmetric, so
nG1

¼ −nG2
and the l · k1 terms cancel. We then realize

that the graphs entering the monodromy relations can be
organized by triplets of Jacobi numerators nG þ nG0 − nG1

times denominator. In a BCJ representation, all these
triplets vanish identically and Eq. (14) is satisfied at the
integrand level. Thus, any BCJ representation satisfies
these monodromy relations, but the converse is not true.
Toward higher-loop relations.—Higher-loop oriented

open string diagrams are world sheets with holes, one

for each loop. (We do not consider string diagrams with
handles in this work. They lead to nonplanar 1=N2

corrections [35].) Just like at one loop, we consider the
integral of the position of a string state on a contractible
closed contour that follows the interior boundary of the
diagram (cf. for instance Fig. 2). The integral vanishes in
the absence of insertion of a closed string operator in the
interior of the diagram. This constitutes the essence of the
monodromy relations at higher loop.
Because the exchange of two external states on the

same boundary depends only on the local behavior of the
Green’s function, we have the same local monodromy
transformation Gðz1; z2Þ ¼ Gðz2; z1Þ � iπ as at the tree
level.
Like at one loop, the global monodromy of moving the

external state 1 from one boundary to another boundary by
crossing the cycle aI leads to the factor expð−iα0πlI · k1Þ.
The loop momenta lI are the zero modes of the string
momenta lI ¼

R
aI
∂X [24]. The string integrand depends

on them through the factor

Z Yg
i¼1

dlie
α0iπ

P
I;J
lIlJΩIJ−2iπα0

P
I;j
lI ·kj

R
zj
P

ωI ; ð18Þ

Importantly, the integration path between P and zj in
Eq. (18) depends on a homology class. This implies that
this expression has an intrinsic multivaluedness, corre-
sponding to the freedom of shifting the loop momentum by
external momenta when punctures cross through the a
cycles. (Doing the Gaussian integration reduces to the
standard expression of the string propagator, which is
single valued on the surface.) Choosing one for each of
these contours induces a choice of g cuts on the world
sheet along g given a cycles that renders the expression
single valued. Our choice to make the a cycle join at
some common point also removes the loop momentum
shifting ambiguity and give globally defined loop
momenta.
A two-loop example: The generalization of Eq. (9) gives

the two-loop integrated relations

FIG. 2. Two-loop integrand monodromy. Integration over the
red contour vanishes. Given the definition of the loop momentum
in Eq. (18), parallel integrations along a1, a2 cancel only up to a
shift in the loop momentum.
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Xjαj
r¼1

�Yr
s¼1

eiα
0πk1·kαs

�
Að2Þð…; αs−1; 1; αs;…jβjγÞ

þ
Xjβj
r¼1

�Yr
s¼1

eiα
0πk1·kβs

�
Að2Þðαj…; βs−1; 1; βs;…jγÞ½e−iα0πl1·k1 �

þ
Xjγj
r¼1

�Yr
s¼1

eiα
0πk1·kγs

�
Að2Þðαjβj…; γs−1; 1; γs;…Þ½e−iα0πl2·k1 � ¼ 0: ð19Þ

At four points we get

Að2Þð1234Þþeiπα
0k1·k2Að2Þð2134Þþeiπα

0k1·k23Að2Þð2314Þ
þAð2Þð234j1j:Þ½e−iπα0l1·k1 �þAð2Þð234j:j1Þ½e−iπα0l2·k1 �¼0

ð20Þ

where Að2Þð1234Þ etc. are planar two-loop amplitude
integrands, and Að2Þð234j1j:Þ;Að2Þð234j:j1Þ are the two
nonplanar amplitude integrands with the external state 1 on
the bI cycle with I ¼ 1, 2, as Fig. 2. The field theory limit
of that relation, at leading order in α0, leads to

Að2Þð1234Þ þAð2Þð2134Þ þ Að2Þð2314Þ
þ Að2Þð234j1j:Þ þ Að2Þð234j:j1Þ ¼ 0; ð21Þ

where ALC
4 ð� � �Þ are the leading color field theory single

trace amplitudes, and with our choice of orientation of the
cycles Að2Þð234j1j:Þ þ Að2Þð234j:j1Þ ¼ A3;1ð234; 1Þ is the
double trace field theory amplitude. We recover the relation
obtained by the unitarity method in Ref. [36]. For N ¼ 4
SYM theory, the graphs are essentially scalar planar and
nonplanar double boxes [37], and this relation is easily
verified by inspection, thanks to the antisymmetry of the
three-point vertex. At order α0, we conjecture that the field
theory limit yields

k1 · k2Að2Þð2134Þ þ k1 · ðk2 þ k3ÞAð2Þð2314Þ
− Að2Þð234j1j:Þ½l1 · k1� − Að2Þð234j:j1Þ½l2 · k1� ¼ 0:

ð22Þ

These relations are not reducible to KK-like color relations,
like these of Ref. [38], just like at tree-level where the BCJ
kinematic relation go beyond KK ones. An extension of the
one-loop argument [39] indicates that the massive string
corrections to the field theory limit of the propagator does
not contribute at the first order in α0. A detailed verification
of these kinds of identities will be provided somewhere
else, but we give below a motivation by considering the
two-particle discontinuity in the case of N ¼ 4 SYM. The
two-particle s-channel cut of the two-loop amplitude is
the sum of two contributions, with one-loop and tree-level
amplitudes, Að� � �Þ and Atreeð� � �Þ [40], respectively:

discsAð2Þð2134Þ ¼ Aðl; 21;− ~lÞAtreeð−l; 34; ~lÞ
þ Atreeðl; 21;− ~lÞAð−l; 34; ~lÞ; ð23Þ

where l and ~l are the on-shell cut loop momenta. The s-
channel two-particle cut of Eq. (22) gives a first contribu-
tion

ðk1 · l1Atreeðl1; 12;− ~l1Þ þ k1·ðl1 þ k2ÞAtreeðl1; 21;− ~l1ÞÞ
× Að−l1; 34; ~l1Þ ¼ 0 ð24Þ

where l1 and ~l1 are the cut momenta. This expression
vanishes thanks to the monodromy relation between the
four-point tree amplitudes in the parenthesis [1,15,16]. The
second contribution is

ðAð1;l2; 2;− ~l2Þ½k1 · l1� þ Aðl2; 12;− ~l2Þ½k1 · ðl1 þ l2Þ�
þ Aðl2; 21;− ~l2Þ½k1 · ðl1 þ l2 þ k2Þ�ÞAtreeð−l2; 34; ~l2Þ
¼ 0 ð25Þ

where l1 is the one-loop loop momentum and l2 and ~l2 are
the cut momenta. This expression vanishes thanks to the
four-point one-loop monodromy relation [Eq. (15)] in the
parenthesis. We believe that this approach has the advan-
tage of fixing some ambiguities in the definition of loop
momentum in quantum field theory. And the implications
of the monodromy relations at higher-loop in maximally
supersymmetric Yang-Mills, by applying our construction
to the worldline formalism of Ref. [41], will be studied
elsewhere.
Finally, we note that our construction should apply to

both the bosonic and supersymmetric string, as far as the
difficulties concerning the integration of the supermoduli
[42] can be put aside.
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APPENDIX: PLANAR AND NONPLANAR
GREEN FUNCTION

The Green function between two external states on
the same boundary of the annulus ℜeðνrÞ ¼ ℜeðνsÞ is
given by ~Gðνr; νsÞ ¼ − log ϑ1½iJmðνr − νsÞjτ�=ϑ01ð0Þ with
log q ¼ −2πt

ϑ1ðνjτÞ
ϑ1

0ð0Þ ¼ sinðπνÞ
π

Y
n≥1

1 − 2qn cosð2πνÞ þ q2n

ð1 − qnÞ2 ðA1Þ

and between two external states on the different boundaries
of the annulus ℜeðνrÞ¼ℜeðνsÞþ 1

2
is given by ~Gðνr;νsÞ¼

−logϑ1ðνr−νsjτÞ=ϑ10ð0Þ¼−logϑ2ðiJmðνr−νsÞjτÞ=θ10ð0Þ
thanks to the relation between the ϑ functions under the
shift ν → νþ 1

2

ϑ1

�
νþ 1

2

����τ
�

¼ ϑ2ðνjτÞ; ϑ2

�
νþ 1

2

����τ
�

¼ −ϑ1ðνjτÞ

ðA2Þ

where

ϑ2ðνjτÞ
ϑ1

0ð0Þ ¼ cosðπνÞ
π

Y
n≥1

1þ 2qn cosð2πνÞ þ q2n

ð1 − qnÞ2 : ðA3Þ

The periodicity around the loop follows from

ϑ1ðνþ τjτÞ ¼ −e−iπτ−2iπνϑ1ðνjτÞ;
ϑ2ðνþ τjτÞ ¼ e−iπτ−2iπνϑ2ðνjτÞ; ðA4Þ

and an appropriate redefinition of the loop momentum.
The string theory correction δ�ðxÞ to the field theory

propagator in Eq. (12) is

δ�ðxÞ ¼ − log ð1� e−2iπjxjtÞ: ðA5Þ
δ−ðxÞ is the contribution of massive string modes propa-
gating between two external states on the same boundary
and δþðxÞ on different boundaries.
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