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We propose a projection measurement onto encoded Bell states with a static network of linear optical
elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency
and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show
that all-optical quantum communication over large distances with communication rates similar to those of
classical communication is possible solely based on local state teleportations using optical sources of
encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application,
generalizing state teleportation to gate teleportation for quantum computation, we find that in order to
achieve universality the intrinsic loss tolerance must be sacrificed and a minimal amount of feedforward has
to be added.
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Introduction.—Since the ground breaking work of Duan
et al. (DLCZ, [1]) who showed that long-distance quantum
communication (LDQC) is possible with linear optics and
atomic-ensemble quantum memories, numerous advanced
versions of their quantum repeater protocol have been
proposed [2]. However, the probabilistic nature of entan-
glement distribution over lossy channels, purification, and
swapping makes this type of nested quantum repeaters
extremely slow, relying on two-way classical communica-
tion and long-lived quantum memories.
In recent years, various proposals have been made to

employ quantum error correction (QEC) codes for LDQC.
Since these codes suppress errors deterministically, long
waiting times and two-way classical communication (and
hence the use of quantum memories) can be, in principle,
completely avoided. While one class of schemes focused
on the correction of operational errors [3–6], another class
did include QEC against transmission losses making high-
rate loss-tolerant [7–9] or even fully fault-tolerant [10–13]
LDQC possible. These latter schemes are limited only by
the speed of the local gate operations and thus they
approach rates as obtainable in classical communication.
Our scheme also allows for ultrafast LDQC, but unlike
[7,10,11] it does so in an all-optical fashion without the use
of difficult local quantum gates (implementable via local
nonlinear matter-light interactions [7,11]).
For this purpose, by employing a certain version of loss-

tolerant parity codes [7,11,14], we suggest sending encoded
qubit states directly, which are then subject to a Bell
measurement (BM) together with locally prepared, encoded
Bell states after every few kilometers (see Fig. 1). These local
state teleportations allow for a nondestructive loss-error
syndrome detection and a qubit state recovery in one step.
The use of QEC by teleportation [15] along the channel is
conceptually similar to the protocol of Ref. [11]. However, in
our scheme, every teleportation is performed with optical
(encoded) Bell states and linear optical elements [16]. It turns

out that the encoding has two positive effects: the larger the
code is, the more efficient the ideal BM (despite the linear-
optics constraint [18]) and the higher the amount of tolerable
photon loss becomes. In contrast to the all-optical scheme of
Ref. [8], our logical BMs are conceptually different andwork
entirely without feedforward. This not only reduces the local
operation times, but also makes on-chip integration along an
optical fiber channel more feasible, as optical switching in
this case is very sensitive to loss [19–21]. In an extended
version of this work [22], we give further details on the loss
resistance of our scheme and we show that it is also robust
against a variety of additional errors such as depolarizing
errors and detector inefficiencies (loss and dark counts) by
performing a detailed secure-key-rate analysis. It is also
demonstrated there that the scheme still works when photon-
number-resolving detectors (as considered here) are replaced
by on-off detectors. Beyond quantum communication, here

FIG. 1. One-way communication scheme: (a) To send a
quantum state jiniðn;mÞ over a long distance, repeater stations
(R) at shorter distances L0 are used to recover the qubit from
accumulated losses (fading arrows). A classical signal (double
line) defines a single Pauli correction X at the receiver. (b) Each
repeater station consists of an encoded Bell state and a highly
efficient, loss-resistant, logical Bell Measurement (BMðn;mÞ)
acting on the incoming signal and one half of the Bell state.
The other half of the Bell state is sent to the next station along
with the result of the BM (classical signal).
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we show that for universal quantum computation, our
encoded BM ceases to work under full loss tolerance, but
ideal scalable quantum computation with linear optics is
still possible with some but less feedforward compared to
the Knill et al. (KLM [23]) and cluster-based [24–26]
approaches.
Encoded Bell measurements.—The quantum parity code

[QPC(n;m)] [11,14] encodes a logical qubit intonm physical
qubits. The code can be understood as having three different
levels of encoding. On the lowest level, which we call the
physical level, we have standard dual-rail (DR, two-mode)
qubits. These are typically realized by two orthogonal
polarization modes of photons fj0i ¼ jHi; j1i ¼ jVig, but
also other realizations like spatial or temporal modes are
possible. On the second level of encoding, the block level,
m physical qubits are collected to represent a block qubit
fj0iðmÞ ¼ jHi⊗m; j1iðmÞ ¼ jVi⊗mg. This repetition part of
the code is crucial for the loss robustness as we see later.
The highest encoding level is the logical level. Here
n block qubits are used to construct the logical qubits
as j�iðn;mÞ ¼ ½j0iðmÞ � j1iðmÞ�⊗n=

ffiffiffiffiffi
2n

p ¼ ½j�iðmÞ�⊗n. The
codewords are then naturally obtained by j�i� ¼
½j0i� � j1i��= ffiffiffi

2
p

, where the � denotes the encoding level
[blank for physical, (m) for block, and ðn;mÞ for logical].
In all three encoding levels the four Bell states are

defined as

jϕk;li� ¼
1ffiffiffi
2

p ½j0; ki� þ ð−1Þlj1; 1 − ki��; ð1Þ

with k; l ∈ f0; 1g. A Bell measurement has to distinguish
between these four Bell states. On the physical level, this
can be partially achieved by combining the two polarization
qubits at a 50∶50 beam splitter followed by polarizing
beam splitters and photon detectors [see Fig. 2(c)]. Unique
click patterns are obtained for jϕ1;0i and jϕ1;1i, whereas the
states jϕ0;li are indistinguishable from each other. Thus, the
overall BM efficiency is 50%, which is optimal for dual-rail
encoding without ancilla photons or feedforward [18].
Our approach to a BM on QPC(n, m)-encoded qubits is

based on the observation that Bell states of the higher
encoding levels can be represented in terms of lower-
encoding-level Bell states,

jϕk;liðmÞ ≅
1ffiffiffiffiffiffiffiffiffiffi
2m−1

p
X
~r∈Al;m

⊗
m

i¼1
jϕk;rii; ð2Þ

jϕk;liðn;mÞ ≅
1ffiffiffiffiffiffiffiffiffi
2n−1

p
X
~s∈Ak;n

⊗
n

i¼1
jϕsi;liðmÞ; ð3Þ

where the index set is defined as Al;m ¼ f~r ∈ f0; 1gmjP
m
i¼1 ri ¼ lðmod 2 Þg [27]. These relationships between

Bell states of different encoding levels show that a logical

BM can be realized by nm simultaneous standard BMs on
the physical level.
Note that the above representations (2), (3) only hold after

an appropriate reordering of the modes (indicated by ≅).
Quite naturally, the photons of two logical qubits in a
Bell state are each paired with their equivalent [see Figs. 2(a)
and 2(b)]. In the following this reordering is omitted in the
notation.
A Bell measurement on the block level is limited by the

same 1
2
-efficiency as a physical BM, because the index k

determining whether a BM on the physical level is
successful is the same for all physical Bell states within
a block Bell state. On the other hand, the index l is always
identified correctly for k ¼ 1, because in that case the
values ri are all accessible. On the logical level, the
situation is quite different. The index k is always identified
correctly, because the values si from the block level are
always available. Additionally, almost every time the index
l will now be identified correctly as well, since it suffices to
identify it in a single block. The only case where this is not
possible is when all block-level Bell states are jϕ0;liðmÞ

states. This can only occur in the states jϕ0;liðn;mÞ with a
statistical weight of 21−n. Consequently, the chance to
identify a logical Bell state correctly, i.e., the logical BM
efficiency, is 1–2−n.
In addition to boosting the BM efficiency to near unity,

the QPCs also protect the Bell measurement against photon
loss. In accordance with our communication scheme
depicted in Fig. 1, we assume that only the photons of
one logical qubit participating in the BM are affected by
loss [28]. Furthermore, we make the usual assumption that
the probability to lose a photon (1 − η) is the same for all
modes of a logical qubit. The probability of a successful
logical Bell measurement in the presence of loss quantified
by η can be derived from the Bell state representations (2)
and (3). To identify the value of k in the state jϕk;liðn;mÞ, a
correct identification of every value si is required; i.e., in

FIG. 2. Block structure and Bell measurement: (a) The block
structure for two QPC(2,2)-qubits. The polarization qubits on the
left (red) belong to the incoming signal and are thus subject to
channel errors, while those on the right (blue) are part of the
encoded Bell state provided in the repeater station. (b) In a Bell
state in QPC encoding the qubits are joined blockwise. The
dashed ellipses highlight physical-level qubit pairs that are
combined at the BM. (c) Optical BM setup on the physical level
adapted to polarization encoding.
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every block the first index must be determined.
Equation (2) shows that this is possible, as long as in
every block at least one physical Bell measurement
identifies the first index. Since this is guaranteed as long
as in every block at least one of them photons (belonging to
that logical qubit subject to loss) is not lost, the probability
of correctly identifying k is given by ½1 − ð1 − ηÞm�n. In
addition, in order to identify the index l in jϕk;liðn;mÞ, it
must be determined in at least one block. The probability to
identify l in a block is given by ηm=2, because all values ri
are required, which means there are no photons lost at all,
and because only the states jϕ1;liðmÞ allow us to detect l
with standard linear optical means. In other words, for the
relevant logical qubit subject to loss, at least one photon
must be left in every block and at least one block must
remain entirely uncorrupted. The success probability of the
logical BM is therefore given by

p ¼ ½1 − ð1 − ηÞm�n −
�
1 − ð1 − ηÞm −

ηm

2

�
n
; ð4Þ

where the second term expresses that all terms where
enough photons were left to identify k but no block allowed
to identify l have to be discarded [29].
Table I shows the attainable BM efficiency for various

amounts of loss. It indicates that the QPCs indeed protect
the logical qubit from loss as long as η > 0.5, and also that,
in general, n should be chosen sufficiently larger than m: a
too large m increases the chance of corrupting every block.
However, a too small m risks corrupting all photon pairs in
a block. Increasing n on the other hand only gives more
blocks, thus increasing the chance to get at least one
without any corruption. Conceptually, this is the most
important result obtained here: a larger code with a larger
number of blocks n results in a higher linear-optics BM
efficiency and a higher loss tolerance at the same time.
This is different from other BM schemes where the loss
tolerance is decreasing, which has to be counteracted by
additional quantum error correction [30] or fast feedfor-
ward operations [8].
Long-distance quantum communication.—To send a

QPCðn;mÞ-encoded qubit state over a total distance L
we propose placing repeater stations after every channel

segment with length L0. At every station an encoded Bell
state jϕ0;0iðn;mÞ is available on demand (i.e., created and
consumed locally), and a logical BM is performed on one
half of the Bell state together with the incoming encoded
qubit (see Fig. 1). Between two stations every physical
qubit suffers from loss according to a transmission coef-
ficient of η ¼ expð−L0=LattÞ (with attenuation length
Latt ¼ 22 km). Whenever the BM succeeds, the qubit state
is recovered from loss and appears at the other half of the
Bell state to be sent to the next station [15,31]. The total
success rate [32] of the communication scheme is then
given as R ¼ pL=L0=t0, where t0 is the elementary time
needed at every repeater station until the incoming signal
qubit has been processed and a fresh encoded Bell state is
ready for teleporting and error correcting the next qubit.
In addition to the repeater success probability Rt0, which

is depicted in Fig. 3 as a function of the repeater spacing L0

for various code sizes, we are also interested in the cost
effectiveness of our communication scheme. To this end,
we define the cost function CL ¼ ðnm=Rt0L0Þ for a given
total distance L similar to that in [11]. It relies on the
assumption that the cost for creating the ancillary encoded
Bell states at every repeater station scales linearly in nm (an
all-optical method for state generation based on coherent
photon conversion [33] that achieves this kind of scaling is
presented in the Supplemental Material [34]). The inverse
1=CL, which corresponds to the repeater success proba-
bility per photons used, is also shown in Fig. 3 for a total
communication distance L ¼ 1000 km. Figure 3 indicates
that total success rates extremely close to R ¼ 1=t0 can be
achieved even for fairly large repeater spacings, but in
terms of cost effectiveness a rate of about R ≈ 0.75=t0
yields better results [35].
Furthermore, for comparison the cost functionC can also

be applied to the case of (near) perfect Bell measurements
on the physical level [38–40] (e.g., realized with additional
atomic processing qubits [11]). While these better BMs
allow for an efficient use of smaller codes, we found
that for the optimal choices of n, m, and L0 the ratio

TABLE I. BM success probability p in % for various
QPC(n, m) and varying loss η.

(n, m) η ¼ 1 0.99 0.95 0.90 0.75 0.50 0.30

(1,1) 50 49.5 47.5 45 37.5 25 15
(2,2) 75 73.99 69.66 63.79 44.82 17.19 4.39
(3,10) 87.5 83.56 65.61 43.71 8.21 0.15 0.00
(6,5) 98.44 97.92 94.69 87.74 52.86 7.68 0.29
(10,3) 99.90 99.87 99.51 97.95 77.77 13.77 0.28
(23,5) 100.00 100.00 100.00 99.95 92.44 15.03 0.05
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FIG. 3. Left: Total success probability Rt0 vs repeater spacing
L0 in km for a communication distance of L ¼ 1000 km and
various encodings [from bottom to top, (10,3),(13,4),(16,4),
(23,5),(35,6)]. Right: Inverse of the cost function C1000 km as a
function of the code parameters n, m. At every point the optimal
repeater spacing L0 is chosen. The most cost-efficient code
is (23,5) with a repeater spacing of L0 ≈ 2.36 km yielding
Rt0 ¼ 77.62%.
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CLðpBM ¼ 0.5Þ=CLðpBM ¼ 1Þ ≈ 3 is almost independent
of the communication distance L. This imposes a limit on
how much more expensive perfect BMs should be com-
pared to a standard optical BM with efficiency 1

2
.

We should also consider the effect of the elementary
processing time t0. Since our logical Bell states are assumed
to be available on demand, t0 corresponds only to the
duration of the linear-optics processing with photon detec-
tion. Compared to those times required in a matter-based
scheme with t0 ∼ 1 μs (even assuming future enhanced
ion-cavity coupling strengths [11]) or an all-optical scheme
including feedforward [8] with t0 ∼ 10 ns (provided all
circuits can be integrated [41]), corresponding to rates
R ∼MHz or R ∼ 0.1 GHz, respectively, our static linear
optical scheme allows, in principle, forGHz rates andbeyond
[42]. For our scheme to be free of feedforward at the
intermediate stations, the updated (logical) Pauli frame after
each teleportation must be classically communicated to the
end of the channel for a final Pauli correction [43]. In general,
let us discuss next universal gates and gate teleportation
based on our encoded BM.
Quantum gate teleportation and quantum computation.

—The physical Pauli operators of the QPCðn;mÞ may be
denoted as Xi;j;Yi;j;Zi;j, with i¼1…n and j ¼ 1…m
labeling the ði; jÞth DR qubit, while the logical operators
are Xðn;mÞ ¼ Xi;1…Xi;m (for any i) and Zðn;mÞ ¼ Z1;j…Zn;j

(for any j) [11]. Therefore, Pauli logic can be performed
directly via suitable Pauli gates on the DR qubits. This is
sufficient for the final Pauli frame correction in our LDQC
scheme as well as for quantum key distribution applica-
tions. More generally, logical X and Z rotations are then
given by exp½−iXðn;mÞθ=2� and exp½−iZðn;mÞθ=2�, respec-
tively, and for any θ∉πZ and n > 1; m > 1, an entangling
operation is needed that acts on the physical qubits. Based
on our encoded linear-optics BM, we can use logical gate
teleportation with suitable encoded offline resource states
[44] to implement arbitrary Clifford computations [includ-
ing logical two-qubit gates such as CNOTðn;mÞ] in an
intrinsically loss-tolerant fashion with no need for feedfor-
ward between the Clifford gates (and with only a final Pauli
frame correction). This is a huge simplification compared
to KLM [23] who require feedforward for every single
CNOT and additional QEC codes to correct photon-loss
errors. However, for universality, any single-qubit gate of
KLM can be performed directly on the DR qubits, whereas
in our general QPCðn;mÞ scheme, the logical non-Clifford
gates do not allow for a static BM-based gate teleportation
or a nonentangling transversal gate application. Therefore,
for universality, we have to sacrifice the intrinsic loss
tolerance and employ the most simple versions of the QPC
such as QPCðn; 1Þ [45]. In this case, an arbitrary logical X
rotation exp½−iXðn;1Þθ=2� can be done via the same rotation
exp½−iXi;1θ=2� directly on the ith DR qubit (for any i)
and the remaining set of Clifford operations [including a

single-qubit π=2 rotation exp½−iZðn;1Þπ=4� for universality]
can be achieved through gate teleportation using the static
linear-optics BM scheme. Since QPCðn; 1Þ is enough to
realize arbitrarily efficient BMs (for sufficiently high n),
efficient linear-optics quantum computation is possible
provided a little, simple Pauli feedforward is added every
time when a sequence of Clifford gates is followed by a
non-Clifford gate. In terms of feedforward, this is also a
simplification compared to existing schemes [48], where
every two-qubit gate requires Pauli corrections on ran-
domly selected physical qubits (for KLM [23]) or even
non-Pauli feedforward is needed (for one-way quantum
computation [24,41]).
Discussion and conclusions.—We proposed an efficient

linear-optics BM onto QPC-encoded Bell states and
showed that, by incorporating protection against trans-
mission losses, it can be used to realize ultrafast high-rate
LDQC in an all-optical fashion. With no need for matter
qubits (neither as quantum memories nor as local quantum
processors) or feedforward operations, our communication
scheme is most suitable to be integrated along an optical
fiber channel via chips that contain quantum sources
[49–51], interferometers [52], and photon detectors [53].
Encoded-state preparations may be based either on non-
linear optical techniques [33] or on linear optics [8,9,22],
then including feedforward [34].
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