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We report the first measurements of the effect of pressure on vibrational modes in emulsions, which
serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure,
we find that the density of states DðωÞ exhibits a low-frequency cutoff ω�, which scales linearly with
the number of extra contacts per particle δz. Moreover, for ω < ω�, our results are consistent with
DðωÞ ∼ ω2=ω�2, a quadratic behavior whose prefactor is larger than what is expected from Debye theory.
This surprising result agrees with recent theoretical findings [E. DeGiuli, A. Laversanne-Finot, G. A.
Düring, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014); S. Franz, G. Parisi, P. Urbani, and
F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015)]. Finally, the degree of localization of the
softest low frequency modes increases with compression, as shown by the participation ratio as well as their
spatial configurations. Overall, our observations show that emulsions are marginally stable and display
non-plane-wave modes up to vanishing frequencies.
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Because of their translational symmetry, the vibrational
modes of crystals are plane waves that exhibit the Debye
scaling in the density of states, DðωÞ ∼ ωd−1, where d is
the spatial dimension. By contrast, amorphous materials,
such as granular materials and glasses, exhibit peculiar
elastic properties. In particular, they display an excess of
low frequency vibrational modes in the density of states
compared to crystalline solids, known as the “boson” peak
[1–3]. In simple model systems, such as sphere packings,
the boson peak diverges in amplitude as the pressure is
lowered towards the unjamming transition [4–12]. The
associated soft modes are responsible for anomalous elastic
and transport properties [4,6,11,13,14] and play an impor-
tant role in plasticity and activated events [15–17]. As the
applied pressure increases above the jamming transition,
their spatial localization increases [5–9].
Theoretically, it was argued that these properties result

from the fact that packings near jamming are marginally
stable: their structure is such that they lie at the threshold
of a linear elastic instability controlled by pressure and
coordination [6]. Very recently, a mean-field approximation
[4] and exact calculations in infinite dimensions [18]
indicated that, for marginally stable structures at low
frequencies, DðωÞ ∼ ω2=ω�2 in any spatial dimension,
where ω� is a characteristic frequency of the soft modes.
In three dimensions, this quadratic behavior matches the
Debye result, but with a much larger prefactor. This result
remains untested in real materials.
Experimentally, the density of states of colloidal glasses

in 2D has been obtained from the thermal motion of the
particles as a function of the global density below the glass
transition [3,16,19,20]. However, experimental tests on

three-dimensional athermal particulate packings are still
lacking in the literature, and are appropriate to accurately
test if materials are, indeed, marginally stable. In this Letter,
we experimentally investigate the pressure dependence of the
density of states and the localization of vibrational modes in
compressed emulsions. Because emulsions are effectively
at zero temperature, the present experiment appears close
enough to the jamming transition to precisely probe its
properties. We extract the characteristic frequency ω� of
the density of states by comparing the system’s Hessian
matrices with and without the internal force terms. We
find that the data are in agreement with the predicted
ω� ∼ ðϕ − ϕcÞ1=2, where ϕ is the packing fraction and ϕc
its value at the jamming threshold. Furthermore, we find that
the density of states can be rescaled byω�, consistent with the
recently proposed scaling behavior DðωÞ ∼ ðω=ω�Þ2 [4,21].
Finally, we examine themicroscopic configuration of the soft
modes by measuring the participation ratio of the particles
and their spatial distribution. We find delocalized soft modes
near jamming, and localized soft modes far above jamming.
Our experimental system is an oil-in-water emulsion,

described in references [22,23], which is a model for soft,
frictionless, athermal sphere packings with an average
droplet radius hRi ¼ 2.5 μm and a polydispersity of 25%.
The refractive indexmatched emulsion is transparent and the
Nile red dye reveals the 3D packing of droplets using a
confocal microscope (Leica TCS SP5 II). Because of a
density difference between the droplets and the continuous
phase, the lowest compression rate is achieved by creaming
under gravity, which gives a packing fraction of ϕc ¼
0.68� 0.02 due to polydispersity, while centrifugation
for 20 min at an acceleration rate of 3000 g leads to highly
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compressed structureswithϕ ¼ 0.88� 0.02 [24]. Allowing
the emulsion to relax to its uncompressed state over a period
of several days probes a broad range of intermediate packing
densities [24], an example of which is shown in Fig. 1. The
packings are analyzed using a Fourier transform algorithm
to identify the particle positions and radii [23]. We then
extract the repulsive force f ijð¼ −f jiÞ exerted by particle j
on particle i via the Princen model [25]

f ij ¼
σ

~RijAij

nij; nij ¼
ri − rj
jri − rjj

; ð1Þ

where ri and rj denote the particle positions,Aij is the area of
droplet deformation, or the geometric area of overlap bet-
ween the reconstructed spheres [26], ~Rij¼ð2RiRj=RiþRjÞ
is the weighted mean radius of the droplets, and
σ ¼ 9.2 mN=m is the interfacial tension. Therefore, we
sum over the force moment tensor for all contacts hiji and
then divide by the volume of the box to obtain the total
pressure on the system

P ¼ 1

3V

X

hiji

X

α

f αijr
α
ij; rij ¼ rj − ri: ð2Þ

Here, α represents the cartesian coordinates. From the
forces, we construct the interaction potential between
contacting particles UðrijÞ, where rij ¼ jrijj. This potential
is harmonic for small deformations. To ensure mechanical
equilibrium, we numerically quench the system into the
nearest energy minimum to satisfy force balance using the
method of steepest descent [5,7]. This procedure does not
move any of the particles beyond the resolution of the
droplet finding technique, which is one third of a voxel size
(i.e., 100 nm, or 2% of the average droplet diameter). This
correction does not have a measurable effect on the
calculation of the density of states done below and gives
validity to the force model in Eq. (1).
We then calculate the corresponding Hessian matrices,

defined for every pair i, j of particles in contact as
Hij ¼ H0

ij þH1
ij, where the first term stems from the

contact stiffness and the second from the contact force

H0
ij ¼ δij

X

k∼i
niknTik

d2U
dr2ik

− nijnTij
d2U
dr2ij

; ð3Þ

and

H1
ij ¼ δij

X

k∼i

ðI − niknTikÞ
rik

dU
drik

−
ðI − nijnTijÞ

rij

dU
drij

; ð4Þ

where the notation k ∼ i indicates that particle k is in
contact with particle i. The polarization vectors eni and the
eigenfrequencies ωn can now be calculated via solution of
the eigenvalue problem

ω2
nmieni ¼

X

j

Hijenj ; ð5Þ

where mi denotes the mass of particle i. Note that, in
our system, inertia is negligible and dynamically, modes
would be overdamped. Here, we have included the masses
to allow for a closer comparison with the literature. An
alternative choice is to set mi ¼ 1 for all i. Then, our
analysis would correspond to the normal modes of the
Hessian matrices, which characterize the amplitude of
thermal fluctuations independently of the damping mecha-
nism. We have checked that both choices lead to essentially
identical results.
The amplitudes of the polarization vectors eni are

visualized in Fig. 1. Since each particle must have all its
neighbors and forces identified, we use ≈1000 particles in
the middle of the experimental packing for each compres-
sion and repeat the experiment three times to collect
statistics. Thus, we obtain a histogram of eigenmodes,
i.e., the density of states DðωÞ, where ω is shown in
units of natural frequency in Fig. 2(a) for different levels
of compression. The natural frequency is given byffiffiffiffiffiffiffiffiffi
κ=m

p ¼ 7.5 × 105 rad=s, where stiffness κ ¼ σ=hRi.
Although the data do not exhibit a plateau in the low-

frequency regime [6,7], the log-log representation reveals a
progressive increase in the number of low-frequency modes
as we approach the jamming transition under gravity, in
agreement with numerical simulations [5–8]. The absence
of a plateau in the experiment is likely due to the slight
compression induced by gravity. Excess soft modes are
generally characterized by the ratio DðωÞ=ωd−1, which
often presents a maximum in simulations and in experi-
ments on molecular glasses [2,27]. Our results do not reveal
a maximum in DðωÞ=ω2, as shown by the solid lines in

FIG. 1. Confocal image of an emulsion at a pressure of 0.4 kPa
and ϕ ¼ 0.74� 0.02 (grey scale). For each reconstructed droplet
i in the middle, the low-frequency vibrational amplitude in the
color map (dim to bright) is obtained as XiðmÞ ¼ P

n<mjeni j,
where eni is the polarization vector of the nth eigenmode,
summing over the lowest m ¼ 40 modes.
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Fig. 2(b), similar to previously observed data from numeri-
cal packings of soft spheres [7].
This absence of a peak can be understood in terms of the

effect of the experimental control parameter, the pressure,
on the system. Pressure affects vibrational properties in two
distinct ways: first, it affects the packing fraction, which, in
turn, increases the mean number of contacts between
particles, or coordination z, and tends to stabilize the
system further. This effect is illustrated in the inset of
Fig. 2(c), from previous measurements in the same setup
[24]. Second, pressure has a direct destabilizing effect that
can lead to a “buckling” phenomenon where soft modes
become unstable [4,6]. These effects can be disentangled
by considering the density of states with and without the
internal stress term, i.e., by using H ¼ H0 þH1 or
H ¼ H0, respectively, in Eq. (5). In the latter case, we
keep the geometric configurations that were formed due to
the applied pressure, but we effectively replace our droplets
by point particles connected with relaxed springs. As
predicted [6], we find that DðωÞ is affected by pressure
only below a certain crossover frequency, ω�, which is
extracted as the frequency below which the densities of
states with and without the pressure term begin to deviate,
see Fig. 2(b). Note thatDðωÞ=ω2 has a maximum near ω� if
H0 alone is considered.
Marginal stability [6] indicates that, as pressure increases,

the stabilizing effect of increasing coordination, which is
apparent when consideringH0 alone, precisely matches the
direct destabilizing effect of the pressure, induced by the
term H1 in the Hessian matrix. In other words, the packing
just makes enough contacts to remain stable. As a result, it
can be proven that ω� ∼ δϕ1=2 [6]. Our data in Fig. 2(c) are
consistent with this prediction, although the line of best fit
has an exponent of 0.6� 0.1. These findings agree with
theory and numerical simulations [7], but the scaling of ω�
remains untested in recent colloidal experiments probing the
jamming transition [19].

Another prediction of marginal stability is that there is no
Debye regime at all. Instead, the theory of marginal
stability leads to

DðωÞ ∼ ðω=ω�Þ2; ð6Þ

below ω� [4,18], with a factor larger than the theoretical
prediction for the Debye model [11], which would imply
that DðωÞ ∼ ω2=ω�3=2. Rescaling our data in Fig. 2(a) by
ω=ω� reveals a data collapse for all pressures in Fig. 3,
consistent with Eq. (6). This result is in agreement with
recent numerical simulations in high dimensions [21].
Although the experimental resolution is not high enough
to definitively rule out the Debye result, the data collapse
and the softening of modes with compression lend support
to the theory of marginal stability.
Next, we study the degree of localization of vibrational

modes by computing the participation ratio pðωÞ of a mode
n as a function of the applied pressure

FIG. 2. (a) The density of states DðωÞ shows a decrease in the number of low frequency modes as the applied pressure is increased.
The black line has a slope 2 in the log-log plot, which is the Debye scaling. (b) The density of states DðωÞ=ω2 as a function of the same
pressure as in (a). The cutoff frequency ω� is identified as the point where the Hessian matrix with (solid line) and without (dashed line)
the internal stress term diverge. (c) The frequency ω� increases with the distance from jamming as δϕ ¼ ϕ − ϕc. The line of best fit
(solid line) is in reasonable agreement with the marginal rigidity prediction (dashed line). The inset shows the scaling relation between
the excess number of contacts δz and δϕ to give ω� ∼ δz.

FIG. 3. The density of states DðωÞ for the rescaled ω=ω� for
all pressures shows good agreement with the predicted slope of
ω2 in Eq. (6).
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pðωnÞ ¼
ðPimijeni j2Þ2
N
P

im
2
i jeni j4

: ð7Þ

The value of pðωÞ ranges from 0 to 1, frommodes localized
to one particle to extended modes, in which all particles
participate. Figure 4(a) shows that the higher the compres-
sion and the lower the frequency, the lower the participation
ratio, suggesting increasing localization. This observation
is consistent with 2D experiments [19], three dimensional
[9] and higher dimensional simulations [21]. The partici-
pation ratio does not report on the spatial configuration of
the participating particles. Therefore, it is useful to visu-
alize the increase in the degree of localization using a color
map (from light to dark blue) for the vibrational amplitudes
of the lowest frequency mode in the packing under gravity
and that of the highest compression, P ¼ 2.7 kPa, as
shown in Figs. 4(b) and 4(c), respectively. These configu-
rations clearly show the delocalization of low-frequency
eigenmodes as the system approaches the jamming tran-
sition, as well as localized modes at high compression. At
intermediate frequencies and pressures, the modes exhibit a
coexistence between localized and disordered modes.
In conclusion, we have experimentally characterized the

effect of pressure on the spectrum of the vibrational modes
for compressed emulsions. Our central results are that both
the scaling of the characteristic frequency ω� as well as the
behavior ofDðωÞ for ω < ω� are consistent with the notion
that emulsions are marginally stable. In the range that can
be probed experimentally, our observations agree with
recent quantitative mean-field theories describing such a
marginal behavior [4,18], giving empirical support for
these views. In the future, it would be very interesting to
study whether marginal stability is robust to different
system preparations, and whether it survives at very large
compression [28].
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