
Local Density of States for Nanoplasmonics

Tigran V. Shahbazyan
Department of Physics, Jackson State University, Jackson, Mississippi 39217, USA

(Received 17 February 2016; published 8 November 2016)

We obtain the local density of states (LDOS) for any nanoplasmonic system in the frequency range
dominated by a localized surface plasmon. By including the Ohmic losses in a consistent way, we show that
the plasmon LDOS is proportional to the local field intensity normalized by the absorbed power. We obtain
explicit formulas for the energy transfer (ET) between quantum emitters and plasmons as well as between
donors and acceptors situated near a plasmonic structure. In the latter case, we find that the plasmon-
assisted ET rate is proportional to the LDOS product at the donor and acceptor positions, obtain,
in a general form, the plasmon ET enhancement factor, and establish the transition onset between
Förster-dominated and plasmon-dominated ET regimes.
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The rapid advances in nanoplasmonics of the past decade
opened up possibilities for energy concentration and trans-
fer at length scales well below the diffraction limit [1].
Optical interactions between dye molecules or semicon-
ductor quantum dots, hereafter referred to as quantum
emitters (QEs), and localized plasmons in metal-dielectric
composite nanostructures underpin major phenomena
in plasmon-enhanced spectroscopy, including surface-
enhanced Raman scattering [2], plasmon-assisted fluores-
cence [3–5] and energy transfer [6–8], strong QE-plasmon
coupling [9–11], and the plasmonic laser (spaser) [12–14].
The interaction of a QE, located at r, with electro-
magnetic modes is characterized by the local density of
states (LDOS) ρðω; rÞ ¼ ð2ω=πc2ÞIm½TrḠðω; r; rÞ�, where
Ḡðω; r; r0Þ is the electromagnetic Green dyadic and c and ω
are speed and frequency of light, respectively, which
represents the number of modes in unit volume and
frequency interval [15]. In particular, the LDOS quantifies
the Purcell enhancement of spontaneous emission by a QE
in a photonic environment [16], e.g., near metal surfaces
[17–20], metamaterials [21,22], or plasmonic nanostruc-
tures [23–26]. A closely related quantity, the cross density
of states (CDOS) ρðω; r; r0Þ ¼ ð2ω=πc2ÞIm½TrḠðω; r; r0Þ�,
describes spatial correlations, e.g., due to indirect coupling
between QEs [27]. While for high-symmetry systems, such
as flat surfaces or spherical particles, the electromagnetic
LDOS is known, its evaluation for general-shape systems
presents a rather challenging task. A photon emission by a
QE involves all system eigenmodes that define the con-
tinuum of final states [28,29], so that, in open systems, the
calculations of the LDOS and CDOS rely on carefully
defined quasinormal modes [30,31].
At the same time, nanoplasmonic systems support a host

of phenomena that are underpinned by nonradiative plas-
mon-assisted transitions. For example, energy transfer (ET)
between QEs and plasmons, whose frequencies are tuned
to resonance, is the key process in many plasmonics

applications [32,33]. The magnitude and range of the
Förster ET between a donor and an acceptor near a
plasmonic structure is strongly enhanced by the plas-
mon-mediated ET channel [34–37], while the role of the
LDOS in the enhancement mechanism is a subject of
ongoing debate [38–46]. Examples of coherent plasmon-
assisted processes include strong QE-plasmon coupling
[47,48] and the spaser [49]. These phenomena hinge on the
QEs coupling to resonant plasmon modes that is charac-
terized by the plasmon LDOS (or CDOS), which, in
general, can be obtained from the electromagnetic LDOS
in the near-field limit. On the other hand, in the frequency
region dominated by a localized plasmon mode, one
expects the plasmon LDOS to be determined directly by
the mode local field. At the same time, for the system size
below the diffraction limit, the plasmon decay is mainly
due to the Ohmic losses in metal, while radiation plays a
relatively minor role [1]. Therefore, any accurate theory for
the plasmon LDOS must rely on the consistent treatment
of Ohmic losses.
Here, we develop a theory for the plasmon LDOS

(and CDOS) for any nanoplasmonic system characterized
by a local dielectric function εðω;rÞ¼ε0ðω;rÞþiε00ðω;rÞ.
Specifically, we show that for ω near the plasmon fre-
quency ωn, the LDOS has a universal form

ρðωn; rÞ ¼
2

πωn

jEnðrÞj2R
dVε00jEnj2

; ð1Þ

where EnðrÞ is the local field determined by the Gauss law
∇ · ½ε0ðωn; rÞEnðrÞ� ¼ 0 and integration is carried over the
system volume. The plasmon LDOS is proportional to the
local field intensity normalized by the absorbed power.
The derivation of Eq. (1), outlined below, involves a
consistent treatment of the Ohmic losses, which determine
the plasmon decay rate γn, and implies a well-defined
plasmon mode with quality factor qn ¼ ωn=γn ≫ 1. Within
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this approach, we obtain general formulas for the QE-
plasmon ET rates and for the donor-acceptor Förster ET
rate near any plasmonic structure. In the latter case, the rate
is proportional to the LDOS product at the donor and
acceptor positions. We derive the plasmon ETenhancement
factor and establish a general condition that governs the
transition between Förster-dominated and plasmon-domi-
nated ET regimes. Finally, for an ensemble of QEs coupled
to a resonant plasmon mode, we derive the cooperative ET
rate in terms of the ET rates for individual QEs.
Theory.—We consider a metal-dielectric nanostructure

supporting localized plasmon modes that is characterized
by dielectric function εðω; rÞ ¼ 1þ 4π

P
iχiðω; rÞ, where

χiðω; rÞ ¼ ΘiðrÞ½εiðωÞ − 1�=4π are the local susceptibil-
ities; ΘiðrÞ is 1 in the region Vi with dielectric function εi
and is 0 outside of it. We assume that only in metallic
regions are the dielectric functions εmðωÞ dispersive and
complex and that the retardation effects are unimportant.
The susceptibilities χi define the polarization vector
PðrÞ ¼ P

iχiðω; rÞEðrÞ, where E ¼ −∇Φ is the local field
and ΦðrÞ is the corresponding potential.
Our goal is to derive the plasmon Green function and,

hence, the LDOS by including, in a consistent way, the
Ohmic losses that give rise to the plasmon decay rate γn.
We assume that plasmon modes are well defined, i.e.,
qn ¼ ωn=γn ≫ 1, and adopt a perturbative approach with
respect to 1=qn. We start with the self-consistent micro-
scopic equation for the potential ΦðrÞ [50]:

ΦðrÞ ¼ φðrÞ þ
Z

dV1dV2uðr − r1ÞPðr1; r2ÞΦðr2Þ; ð2Þ

where P̂ ¼ P̂0 þ iP̂00 is the electron polarization operator,
uðrÞ ¼ 1=r is the Coulomb potential (we set the electron
charge to unity), and φðrÞ is an external potential. The
system eigenmodes are described by the homogeneous part
of Eq. (2), which we write as ðΔþ 4πP̂ÞΦ ¼ 0, where we
used that Δuðr − r0Þ ¼ −4πδðr − r0Þ. The operator P̂ is
related to the polarization vector P via the induced charge
density: ρðrÞ ¼ R

dr0Pðr; r0ÞΦðr0Þ ¼ −∇ · PðrÞ. In the local
case, we have ∇ · PðrÞ ¼ P

i∇ · ½χiðrÞEðrÞ�, and the polari-
zation operator takes the form

Pðω; r; r0Þ ¼
X
i

∇ · ½χiðω; rÞ∇δðr − r0Þ�: ð3Þ

We now introduce eigenfunctions ΦnðrÞ and eigenvalues
λnðωÞ of the real part of polarization operator as

4πP̂0Φn ≡ 4π
X
i

∇ · ðχ0i∇ΦnÞ ¼ λnΔΦn: ð4Þ

Since ΦnðrÞ are harmonic in each region and continuous at
the interfaces, they must be regular inside the nanostructure
and decay sufficiently fast outside of it. Note that this
approach resembles the eigenvalue problem in binary

systems [1,51] but with the key difference that here the
eigenvalues depend on the system dielectric function,
allowing us to include the losses in a consistent way.
From Eq. (4), the mode orthogonality follows:R
dVEm ·En ¼ δmn

R
dVE2

n. Note that the eigenfunctions
of P̂0 can always be chosen real. Using Eq. (4), the
eigenvalues are found as λn ¼ 4πhnjP̂0jni=hnjΔ̂jni. To find
eigenfrequencies ωn, we write this expression as

1þ λnðωÞ ¼
X
i

ε0i

R
dViE2

nR
dVE2

n
¼

R
dVε0ðω; rÞE2

nR
dVE2

n
: ð5Þ

For ω ¼ ωn, the right-hand side of Eq. (5) vanishes due
to Gauss’s law, and so ωn are found from λnðωnÞ ¼ −1.
In the presence of Ohmic losses, the mode eigenfre-

quencies acquire an imaginary correction, ω0
n¼ωn−iγn=2,

which can be found by including the imaginary part of
polarization operator P̂00 in Eq. (4). For qn ¼ ωn=γn ≫ 1,
the correction δλn to the eigenvalue is small, and, in the
first order in 1=qn, the eigenfunctions are unchanged. The
new eigenfrequency condition reads 1þ λn þ δλn ¼ 0,
where δλn ¼ iλnhnjP̂00jni=hnjP̂0jni. Using the expansion
λnðω0

nÞ ¼ λnðωnÞ − iðγn=2Þ½∂λnðωnÞ=∂ωn� together with
λnðωnÞ ¼ −1, we finally obtain the mode decay rate as

γn ¼ −2
�∂λn
∂ωn

�
−1 hnjP̂00jni

hnjP̂0jni ¼ Qn

Un
; ð6Þ

where we introduced the mode energy

Un ¼
ωn

2

∂λn
∂ωn

hnjP̂0jni ¼ −
ωn

2

∂λn
∂ωn

Re
Z

dVEn · Pn ð7Þ

and the absorbed power

Qn ¼ −ωnhnjP̂00jni ¼ ωnIm
Z

dVEn · Pn: ð8Þ

Note that, although the eigenstates and eigenvalues in Eq. (4)
are defined for a local form of P̂0, the corrections δλn,
originating from P̂00, may include nonlocal effects as well. In
Eq. (7), the ω dependence of λn comes from the metallic
regions, i.e., ∂λn=∂ωn ¼

P
mð∂λn=∂ε0mÞð∂ε0m=∂ωnÞ, and

using Pn ¼ En½εðωn; rÞ − 1�=4π, where the first term’s
contribution vanishes to due to Gauss’s law, we write

Un ¼
ωn

8π

X
m

∂ε0m
∂ωn

∂λn
∂ε0m

Z
dVE2

n: ð9Þ

Then, using ð∂λn=∂ε0mÞ
R
dVE2

n ¼
R
dVmE2

n [see Eq. (5)],
we recover the usual expression for the mode energy [52]:

Un ¼
ωn

8π

X
m

∂ε0m
∂ωn

Z
dVmE2

n ¼
Z

dV
8π

∂ðωnε
0Þ

∂ωn
E2

n: ð10Þ
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Similarly, the absorbed power (8) takes the form

Qn ¼
ωn

4π

Z
dVε00ðωn; rÞE2

nðrÞ þQnl
n ; ð11Þ

where Qnl
n includes nonlocal contributions, e.g., due to

electron-hole pairs excitation near the metal-dielectric inter-
face [53]. Here we consider the local case only and disregard
Qnl

n in what follows. The integrals in Eqs. (10) and (11) are,
in fact, carried over the metallic regions, and, for a single
metallic region, we recover the plasmon bulk decay rate:
γn ¼ 2ε00mðωnÞ=½∂ε0mðωnÞ=∂ωn�.
We now turn to Green’s function Ĝ for potentials,

satisfying ðΔþ 4πP̂ÞGðr; r0Þ ¼ −4πδðr − r0Þ, which we
split into Coulomb and plasmon terms as Ĝ ¼ ûþ Ĝp,
where the latter satisfies ðΔþ 4πP̂ÞĜp ¼ −4πP̂ û. We
expand Ĝp over the eigenstates of P̂0 as Gpðω; r; r0Þ ¼P

nG
p
nðωÞΦnðrÞΦnðr0Þ, where the coefficients

Gp
nðωÞ ¼ λnðωÞ

hnjP̂0jni
λnðωÞ þ δλnðωÞ

1þ λnðωÞ þ δλnðωÞ
ð12Þ

exhibit plasmon resonances. Near plasmon resonance at
ωn, expanding λnðωÞ ¼ λnðωnÞ þ ð∂λn=∂ωnÞðω − ωnÞ and
using Eqs. (7)–(10), we obtainGp

n ¼ gn=ðω − ωn þ iγn=2Þ,
where gn ¼ ωn=2Un is the oscillator strength reflecting the
fact that it is Un, rather than ℏωn, that represent the mode
energy in a dispersive medium [52]. Similarly, the Green
dyadic D̄ðω; r; r0Þ ¼ ∇ ⊗ ∇0Gðω; r; r0Þ, which matches
the near-field limit of ð−4πω2=c2ÞḠðω; r; r0Þ, is also a
sum of Coulomb and plasmon terms: D̄ ¼ D̄0 þ D̄p. For
well-resolved modes, the plasmon Green dyadic D̄p is
dominated by the resonant mode, and we finally obtain

D̄pðω; r; r0Þ ¼
ωn

2Un

EnðrÞ ⊗ Enðr0Þ
ω − ωn þ iγn=2

: ð13Þ

Note that the plasmon Green dyadic (13) obeys the
optical theorem

R
dV1ε

00ðω;r1ÞD̄�
pðω;r;r1Þ ·D̄pðω;r1;r0Þ¼

−4πD̄p
00ðω;r;r0Þ. Correspondingly, the plasmon LDOS,

defined as ρðω; rÞ ¼ −ð1=2π2ωÞTrD̄p
00ðω; r; rÞ, has the

Lorentzian shape

ρðω; rÞ ¼ γn
8π2Un

E2
nðrÞ

ðω − ωnÞ2 þ γ2n=4
: ð14Þ

Frequency integration of Eq. (14) yields, with help of
Eq. (10), the plasmon mode density

ρðrÞ ¼
Z

dωρðω; rÞ ¼ 2E2
nðrÞR

dV½∂ðωnε
0Þ=∂ωn�E2

n
; ð15Þ

which describes the spatial distribution of plasmon states
and, for typicalEnðrÞ, represents the inverse plasmon mode

volume [25,54]. Near the resonance (jω − ωnj ≪ γn), the
plasmon LDOS takes the form

ρðωn; rÞ ¼
E2

nðrÞ
2π2Unγn

¼ E2
nðrÞ

2π2Qn
; ð16Þ

where Qn is given by Eq. (11) and we used γn ¼ Qn=Un
[see Eq. (6)]. Remarkably, the mode energyUn cancels out,
and ρðωn; rÞ is proportional to the local field intensity
normalized by the absorbed power. In a similar manner,
for the CDOS near the plasmon resonance we obtain
ρðωn; r; r0Þ ¼ ð2π2QnÞ−1EnðrÞEnðr0Þ. Note that we used
the real eigenmodes of Eq. (4); for local fields in complex
form, Eqs. (10), (11), (13), and (16) (and the above CDOS)
are multiplied by 1=2, but in either case, the plasmon LDOS
has the universal form (1).
Applications to energy transfer.—Below, we apply our

results to ET between QEs and plasmons as well as
between donors and acceptors near a plasmonic structure.
Consider a QE with the dipole moment p ¼ μn (μ is
the dipole matrix element and n is its orientation) inter-
acting with a resonant plasmon mode [see Fig. 1(a)]. The

FIG. 1. (a) Normalized QE-plasmon ET rate and (b) plasmon
enhancement of the Förster ET rate for QEs near the poles of a
spheroidal NP with aspect ratio b=a.
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QE-plasmon ET rate Γ ¼ ð2=ℏÞIm½p� ·EðrÞ�, where
EðrÞ ¼ −D̄ðωn; r; rÞ · p is the QE local field, has the
standard form Γ ¼ ð4π2μ2ωn=3ℏÞρ̄ðωn; rÞ [15], where

ρ̄ðωn; rÞ ¼
−3

2π2ωn
n · D̄00ðωn; r; rÞ · n ¼ 6

πωn

jn ·EnðrÞj2R
dVε00jEnj2

ð17Þ
is the projected plasmon LDOS (hereafter, we adopt
complex field notations), yielding

Γ ¼ 8πμ2

ℏ
jn ·EnðrÞj2R
dVε00jEnj2

: ð18Þ

The rate increases when the losses are reduced; i.e., the
plasmon resonance becomes sharper.
To verify Eq. (18), let us recover the QE-plasmon ET rate

for a spherical metal nanoparticle (NP) [55]. The eigenm-
odes inside and outside the NP, respectively, have the form
ElmðrÞ ∝ ∇½rlYlmðr̂Þ� and ElmðrÞ ∝ a2lþ1∇½r−l−1Ylmðr̂Þ�,
where a is the NP radius, Ylmðr̂Þ are the spherical
harmonics (l and m are polar and azimuthal numbers),
and the eigenfrequencies ωl satisfy lε0mðωlÞþlþ1¼0. For
a QE oriented, e.g., normally to the NP surface, we obtain

Γl ¼ ð2lþ 1Þ ðlþ 1Þ2
lε00mðωlÞ

2μ2

ℏ
a2lþ1

r2lþ4
: ð19Þ

To illustrate the role of local fields, we plot in Fig. 1(a) the
QE-plasmon ET rate for longitudinal dipole mode in a
spheroidal NP normalized by that for spherical NP.
Consider now an ensemble of QEs near a plasmonic

nanostructure. The plasmon-induced spatial correlations
between QEs lead to cooperative effects [56,57], and the
ET rates are given by the eigenvalues of the decay matrix
Γij ¼ ð4π2μ2ωn=3ℏÞρ̄ðωn; ri; rjÞ, where ρ̄ðω; ri; rjÞ ¼
−ð3=2π2ωÞni · D̄00ðω; ri; rjÞ · nj is the projected CDOS
(ri and ni are, respectively, the QEs’ positions and
orientations). Using the single-mode chain rule for the
CDOS, ρ̄nðωn;ri;rjÞρ̄nðωn;rj;rkÞ¼ ρ̄nðωn;ri;rkÞρ̄nðωn;rjÞ,
the cooperative ET rate Γc can be found as

Γc ¼ 4π2μ2ωn

3ℏ

X
i

ρ̄ðωn; riÞ ¼
X
i

Γi; ð20Þ

where individual rates Γi are given by Eq. (18). As
expected, Γc scales linearly with the ensemble size.
We now turn to ET between a donor and an acceptor

located at rd and ra, respectively, near a plasmonic structure
[see Fig. 1(b)]. The rate of direct (Förster) ET due to donor-
acceptor dipole coupling, ΓF

ad, normalized to the donor
radiative decay rate γr, has the form [15]

ΓF
ad

γr
¼ 9c4

8π

Z
dω
ω4

fdðωÞσaðωÞjT0
adj2 ¼

�
rF
rad

�
6

; ð21Þ

where fdðωÞ and σaðωÞ are, respectively, the donor
spectral function and the acceptor absorption cross section,
T0
ad ¼ −na · D̄0ðra − rdÞ · nd ¼ sad=r3ad is the transition

matrix element [rad ¼ ra − rd is the donor-acceptor
distance and sad is the orientational factor], and
r6F ¼ ð9c4s2ad=8πÞ

R
dωfdðωÞσaðωÞ=ω4 defines the Förster

distance rF via the QEs’ spectral overlap. The plasmon ET
channel is included into Eq. (21) by replacing T0

ad with
Tad ¼ T0

ad þ Tp
ad, where Tp

ad ¼ −na · D̄pðω; ra; rdÞ · nd is
the plasmon matrix element [34–37]. Typically, the QEs’
spectral bands overlap well within a much broader plasmon
band [6–8], so that D̄p can be taken at the resonance ωn.
Then, the plasmon matrix element is related to the projected
CDOS as Tp

ad ¼ ð2i=3Þπ2ωnρ̄ðωn; ra; rdÞ, and, using the
above chain rule, we obtain the donor-acceptor ET rate as
Γad ¼ ΓF

ad þ Γp
ad, where

Γp
ad

γr
¼ 4π4r6F

9s2ad
ω2
nρ̄ðωn; raÞρ̄ðωn; rdÞ ð22Þ

is the plasmon-assisted ET rate. Importantly, Γp
ad is propor-

tional to the LDOS product at the donor and acceptor
positions and, therefore, exhibits a donor-acceptor sym-
metry. To gain more insight, let us express Γp

ad in terms of
individual QE-plasmon ET rates (18) as

Γp
ad

γr
¼

�
ℏΓa

2UF

��
ℏΓd

2UF

�
; ð23Þ

where UF ¼ μ2sad=r3F is the dipole interaction at the
Förster distance. Factorization of the plasmon-assisted
donor-acceptor ET rate into the rates of constituent proc-
esses (donor-to-plasmon and plasmon-to-acceptor) reflects
the incoherent nature of ET between different QEs.
While Förster ET is efficient for small donor-acceptor

distances, the system transitions to a plasmon-dominated
ET regime as rad increases [6–8]. The transition onset is
reached when Γp

ad ≳ ΓF
ad, or, using Eqs. (21) and (23),

�
ℏΓa

2Uad

��
ℏΓd

2Uad

�
≳ 1; ð24Þ

where Uad ¼ μ2sad=r3ad is the donor-acceptor dipole inter-
action; i.e., when the widths associated with individual ET
processes exceed the direct QE coupling. The explicit
LDOS dependence of the ET rate allows us to derive, in
a general form, the plasmon enhancement factor for Förster
ET: Γad=ΓF

ad. After averaging Eq. (22), i.e., replacing ρ̄with
ρ and s2ad with 2=3, and using Eq. (1), we obtain

Γad

ΓF
ad

¼ 1þ 3

2

�
VadjEnðraÞj2R
dVε00jEnj2

��
VadjEnðrdÞj2R
dVε00jEnj2

�
; ð25Þ

where Vad ¼ 4πr3ad=3 is the spherical volume associated
with rad. The ET enhancement factor depends solely on the
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local field distribution in the system and, therefore, can be
varied in a wide range with changing the system shape.
In Fig. 1(b), we plot Γad=ΓF

ad for a donor and an acceptor
at a distance d from the opposite poles of a spheroidal NP.
As the NP shape changes from a sphere to a thin nanorod,
the ET rate increases by several orders of magnitude,
reflecting the change in the LDOS that governs the
individual QE-plasmon ET rates [see Fig. 1(a)].
Finally, for ET between the ensembles of donors and

acceptors near a plasmonic structure [58,59], the plasmon
contribution to the ET rate factorizes into a product of rates
for two constituent cooperative processes: an ET from
donors to a resonant plasmon mode followed by an ET
from the plasmon mode to acceptors. The ET rate between
two ensembles is then given by Eq. (23), where individual
rates Γa and Γd are replaced with their cooperative counter-
parts Γc

a and Γc
d, given by Eq. (20).

In summary, the LDOS for any nanoplasmonic system
has the universal form (1) in the frequency region domi-
nated by a plasmon resonance. Explicit formulas, in terms
of the plasmon local field, are derived for ET between QEs
and plasmons as well as between donors and acceptors
situated near a plasmonic nanostructure.
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