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We obtain the local density of states (LDOS) for any nanoplasmonic system in the frequency range
dominated by a localized surface plasmon. By including the Ohmic losses in a consistent way, we show that
the plasmon LDOS is proportional to the local field intensity normalized by the absorbed power. We obtain
explicit formulas for the energy transfer (ET) between quantum emitters and plasmons as well as between
donors and acceptors situated near a plasmonic structure. In the latter case, we find that the plasmon-
assisted ET rate is proportional to the LDOS product at the donor and acceptor positions, obtain,
in a general form, the plasmon ET enhancement factor, and establish the transition onset between
Forster-dominated and plasmon-dominated ET regimes.
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The rapid advances in nanoplasmonics of the past decade
opened up possibilities for energy concentration and trans-
fer at length scales well below the diffraction limit [1].
Optical interactions between dye molecules or semicon-
ductor quantum dots, hereafter referred to as quantum
emitters (QEs), and localized plasmons in metal-dielectric
composite nanostructures underpin major phenomena
in plasmon-enhanced spectroscopy, including surface-
enhanced Raman scattering [2], plasmon-assisted fluores-
cence [3-5] and energy transfer [6—8], strong QE-plasmon
coupling [9-11], and the plasmonic laser (spaser) [12—14].
The interaction of a QE, located at r, with electro-
magnetic modes is characterized by the local density of
states (LDOS) p(w,r) = (2w/xc?)Im[TrG (w;r,r)], where
G(w;r,r) is the electromagnetic Green dyadic and ¢ and @
are speed and frequency of light, respectively, which
represents the number of modes in unit volume and
frequency interval [15]. In particular, the LDOS quantifies
the Purcell enhancement of spontaneous emission by a QE
in a photonic environment [16], e.g., near metal surfaces
[17-20], metamaterials [21,22], or plasmonic nanostruc-
tures [23-26]. A closely related quantity, the cross density
of states (CDOS) p(w;r.r) = (2w/xc?)Im[TtG (w;r,7)],
describes spatial correlations, e.g., due to indirect coupling
between QEs [27]. While for high-symmetry systems, such
as flat surfaces or spherical particles, the electromagnetic
LDOS is known, its evaluation for general-shape systems
presents a rather challenging task. A photon emission by a
QE involves all system eigenmodes that define the con-
tinuum of final states [28,29], so that, in open systems, the
calculations of the LDOS and CDOS rely on carefully
defined quasinormal modes [30,31].

At the same time, nanoplasmonic systems support a host
of phenomena that are underpinned by nonradiative plas-
mon-assisted transitions. For example, energy transfer (ET)
between QEs and plasmons, whose frequencies are tuned
to resonance, is the key process in many plasmonics
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applications [32,33]. The magnitude and range of the
Forster ET between a donor and an acceptor near a
plasmonic structure is strongly enhanced by the plas-
mon-mediated ET channel [34-37], while the role of the
LDOS in the enhancement mechanism is a subject of
ongoing debate [38—46]. Examples of coherent plasmon-
assisted processes include strong QE-plasmon coupling
[47,48] and the spaser [49]. These phenomena hinge on the
QESs coupling to resonant plasmon modes that is charac-
terized by the plasmon LDOS (or CDOS), which, in
general, can be obtained from the electromagnetic LDOS
in the near-field limit. On the other hand, in the frequency
region dominated by a localized plasmon mode, one
expects the plasmon LDOS to be determined directly by
the mode local field. At the same time, for the system size
below the diffraction limit, the plasmon decay is mainly
due to the Ohmic losses in metal, while radiation plays a
relatively minor role [1]. Therefore, any accurate theory for
the plasmon LDOS must rely on the consistent treatment
of Ohmic losses.

Here, we develop a theory for the plasmon LDOS
(and CDOS) for any nanoplasmonic system characterized
by a local dielectric function e(w,r)=¢(w,r)+ie" (w,r).
Specifically, we show that for @ near the plasmon fre-
quency @, the LDOS has a universal form

2 B,0P "
mw, [dVE'|E, >

p(a)n’r) =

where E, (r) is the local field determined by the Gauss law
V. [¢(w,,r)E,(r)] = 0 and integration is carried over the
system volume. The plasmon LDOS is proportional to the
local field intensity normalized by the absorbed power.
The derivation of Eq. (1), outlined below, involves a
consistent treatment of the Ohmic losses, which determine
the plasmon decay rate y,, and implies a well-defined
plasmon mode with quality factor ¢, = @, /7, > 1. Within
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this approach, we obtain general formulas for the QE-
plasmon ET rates and for the donor-acceptor Forster ET
rate near any plasmonic structure. In the latter case, the rate
is proportional to the LDOS product at the donor and
acceptor positions. We derive the plasmon ET enhancement
factor and establish a general condition that governs the
transition between Forster-dominated and plasmon-domi-
nated ET regimes. Finally, for an ensemble of QEs coupled
to a resonant plasmon mode, we derive the cooperative ET
rate in terms of the ET rates for individual QEs.

Theory.—We consider a metal-dielectric nanostructure
supporting localized plasmon modes that is characterized
by dielectric function e(w,r) = 1+ 4x)_ y:(w,r), where
xilw,r) = 0,(r)[e;(w) — 1]/4x are the local susceptibil-
ities; ©;(r) is 1 in the region V; with dielectric function ¢;
and is O outside of it. We assume that only in metallic
regions are the dielectric functions ¢,,(@) dispersive and
complex and that the retardation effects are unimportant.
The susceptibilities y; define the polarization vector
P(r) = > xi(ow,r)E(r), where E = —V® is the local field
and ®(r) is the corresponding potential.

Our goal is to derive the plasmon Green function and,
hence, the LDOS by including, in a consistent way, the
Ohmic losses that give rise to the plasmon decay rate y,,.
We assume that plasmon modes are well defined, i.e.,
q, = w,/v,> 1, and adopt a perturbative approach with
respect to 1/¢g,. We start with the self-consistent micro-
scopic equation for the potential ®(r) [50]:

B(r) = p(r) + / dV\dVsu(r =) P(ry. 1)), (2)

where P = P’ + iP" is the electron polarization operator,
u(r) = 1/r is the Coulomb potential (we set the electron
charge to unity), and ¢(r) is an external potential. The
system eigenmodes are described by the homogeneous part
of Eq. (2), which we write as (A 4 4zP)® = 0, where we
used that Au(r—r) = —4z6(r —r). The operator P is
related to the polarization vector P via the induced charge
density: p(r) = [dr'P(r,r')®(r') = =V - P(r). In the local
case, we have V- P(r) = >,V - [y;(r)E(r)], and the polari-
zation operator takes the form

Plw;r,r) = Zv. lyi(0,r)VS(r —1')). (3)

We now introduce eigenfunctions ®,(r) and eigenvalues
A, (@) of the real part of polarization operator as

471?’/@" = 4”ZV : (Zivq)n> = /InAq)n (4)

Since ®,,(r) are harmonic in each region and continuous at
the interfaces, they must be regular inside the nanostructure
and decay sufficiently fast outside of it. Note that this
approach resembles the eigenvalue problem in binary

systems [1,51] but with the key difference that here the
eigenvalues depend on the system dielectric function,
allowing us to include the losses in a consistent way.
From Eq. (4), the mode orthogonality follows:
JdVE,,-E, =6, [ dVEZ. Note that the eigenfunctions
of P' can always be chosen real. Using Eq. (4), the
eigenvalues are found as 4, = 4z(n|P'|n)/(n|A|n). To find
eigenfrequencies w,,, we write this expression as

JdV.E:  [dVé(w.r)E}
1+ ,(w)=") ¢ = . 5
+ o) = S e = s (5)
For w = w,,, the right-hand side of Eq. (5) vanishes due
to Gauss’s law, and so w,, are found from 4,(w,) = —1.
In the presence of Ohmic losses, the mode eigenfre-
quencies acquire an imaginary correction, @, =, —iy,/2,
which can be found by including the imaginary part of
polarization operator P” in Eq. (4). For g, = w, /7, > 1,
the correction 64, to the eigenvalue is small, and, in the
first order in 1/g,, the eigenfunctions are unchanged. The
new eigenfrequency condition reads 1+ 4, + 64, =0,
where 84, = il,(n|P"|n)/(n|P'|n). Using the expansion
j'n(w/n) = A (a)n) - l(yn/z)[aln (wn)/awn] together with

A, (®,) = —1, we finally obtain the mode decay rate as
A\~ (n|P”
n==(50) GEn e ©
ow, (n|P'|ln) U,

where we introduced the mode energy

= 20 Oy gy — =2 D

Un= 2 dw, 2 dw,

Re/ dvE,-P, (7)
and the absorbed power
0, = =0, (4P|} =yl [ aVE, P, (8)

Note that, although the eigenstates and eigenvalues in Eq. (4)
are defined for a local form of P', the corrections Ohys
originating from P, may include nonlocal effects as well. In
Eq. (7), the  dependence of 4, comes from the metallic
regions, i.e., 04,/0w, =, (04,/0¢,)(0¢,,/0w,), and
using P, =E,[e(w,,r) — 1]/4n, where the first term’s
contribution vanishes to due to Gauss’s law, we write

/
U :“’"Zag”’ ok, / dVE2. (9)

n Q. /
87 4~ Ow, Oe,,

Then, using (04, /0¢,,) [ dVEZ = [dV,E3 [see Eq. (5)],
we recover the usual expression for the mode energy [52]:

/ dV /
U, =2 ag’”/dvaﬁz/a(w"S)Ei. (10)

8r — Jw, 8z Ow,
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Similarly, the absorbed power (8) takes the form

Wy,

___n /! 2 nl
0, = [ aveo, B +0f. (1)

where Q7' includes nonlocal contributions, e.g., due to
electron-hole pairs excitation near the metal-dielectric inter-
face [53]. Here we consider the local case only and disregard
Q™ in what follows. The integrals in Eqs. (10) and (11) are,
in fact, carried over the metallic regions, and, for a single
metallic region, we recover the plasmon bulk decay rate:
Yn = 28;;1 (wn)/[agin (wn)/awn]'

We now turn to Green’s function G for potentials,
satisfying (A + 4zP)G(r,r') = —=4z8(r —r’), which we
split into Coulomb and plasmon terms as G=1i+ GP,
where the latter satisfies (A +4er)Gp = —4zP 0. We

expand Gp over the eigenstates of P as G[,(a);r, r)=
>°,Gh(w)®,(r)®,(r'), where the coefficients

(@) A, (@) + 64, (w)

Gi(@) = (n|P'|n) 1 + 4,(w) + 64,(w)

(12)

exhibit plasmon resonances. Near plasmon resonance at
w,, expanding 1,(®) = 1,(w,) + (04,/0w,)(® — ®,) and
using Egs. (7)—(10), we obtain G, = g,/(®w — w, + iy,/2),
where g, = w,/2U,, is the oscillator strength reflecting the
fact that it is U,,, rather than #w,, that represent the mode
energy in a dispersive medium [52]. Similarly, the Green
dyadic D(w;r,r') =V ® V'G(w;r,r'), which matches
the near-field limit of (—4zw?/c?)G(w;r,r), is also a
sum of Coulomb and plasmon terms: D = D, + I_)p. For
well-resolved modes, the plasmon Green dyadic 1_)p is
dominated by the resonant mode, and we finally obtain

E,(r) ® E,(r)

r/ - 7
D,(w:r.r) = 2Ua) w, +iy,/2"

(13)

Note that the plasmon Green dyadic (13) obeys the
optical theorem [dV & (w.r)D%(w;r,r))-D,(w;r,r)=
—4zD," (w;r.r'). Correspondingly, the plasmon LDOS,
defined as p(w,r) = —(1/27°w)TtD,” (w;r,r), has the
Lorentzian shape

Yn E;(r)
872U, (0 —w,)* +72/4"

pl.r) = (14)

Frequency integration of Eq. (14) yields, with help of
Eq. (10), the plasmon mode density

2E3()
m>/mmafw S

which describes the spatial distribution of plasmon states
and, for typical E,, (r), represents the inverse plasmon mode

]Ez’ (15)

volume [25,54]. Near the resonance (jo —w,| < y,), the
plasmon LDOS takes the form

Ei(r) _ Ei(r)
s = n = n s 16
pl@y,.r) a2 Uy, 72 0, (16)
where Q, is given by Eq. (11) and we used y,, = Q,,/U,

[see Eq. (6)]. Remarkably, the mode energy U,, cancels out,
and p(w,,r) is proportional to the local field intensity
normalized by the absorbed power. In a similar manner,
for the CDOS near the plasmon resonance we obtain
plw,,r.r) = (22°Q,) 'E,(r)E,(r). Note that we used
the real eigenmodes of Eq. (4); for local fields in complex
form, Egs. (10), (11), (13), and (16) (and the above CDOS)
are multiplied by 1/2, but in either case, the plasmon LDOS
has the universal form (1).

Applications to energy transfer.—Below, we apply our
results to ET between QEs and plasmons as well as
between donors and acceptors near a plasmonic structure.
Consider a QE with the dipole moment p = un (1 is
the dipole matrix element and n is its orientation) inter-
acting with a resonant plasmon mode [see Fig. 1(a)]. The
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FIG. 1. (a) Normalized QE-plasmon ET rate and (b) plasmon
enhancement of the Forster ET rate for QEs near the poles of a
spheroidal NP with aspect ratio b/a.
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QE-plasmon ET rate I'=(2/A)lm[p*-E(r)], where
E(r) = =D(w,;r,r) -p is the QE local field, has the
standard form I" = (47°p’w, /37)p(w,.r) [15], where

-3 _ 6 |n-E,(r)

) = D (@yirr) n = —— s
p(a)n r) 271'20)nn (Cl) r I‘) n ﬂa),,deé’"\EnF
(17)

is the projected plasmon LDOS (hereafter, we adopt
complex field notations), yielding

8m? [n - E, ()]

r= .
n [dVe'E,|*

(18)

The rate increases when the losses are reduced; i.e., the
plasmon resonance becomes sharper.

To verify Eq. (18), let us recover the QE-plasmon ET rate
for a spherical metal nanoparticle (NP) [55]. The eigenm-
odes inside and outside the NP, respectively, have the form
E,,(r) < V[r'Y,, ()] and E,,(r) o« a®*'V[r='71Y,, (7)),
where a is the NP radius, Y,,(#) are the spherical
harmonics (/! and m are polar and azimuthal numbers),
and the eigenfrequencies w; satisfy le), (w;)+1+1=0. For
a QE oriented, e.g., normally to the NP surface, we obtain

(l—|—1)22/,l2 20+1

[=Q20+1) I (w)) B 2T

(19)

To illustrate the role of local fields, we plot in Fig. 1(a) the
QE-plasmon ET rate for longitudinal dipole mode in a
spheroidal NP normalized by that for spherical NP.

Consider now an ensemble of QEs near a plasmonic
nanostructure. The plasmon-induced spatial correlations
between QEs lead to cooperative effects [56,57], and the
ET rates are given by the eigenvalues of the decay matrix
I, = (41w, /30)p(w,;ri.r;),  where plwsr.r;) =
—(3/27%w)n; - D"(w;r;.r;) - n; is the projected CDOS
(r; and n; are, respectively, the QEs’ positions and
orientations). Using the single-mode chain rule for the
CDOS’ pn(a)n;ri’rj)pn(wn;rj’rk) :ﬁn(a)n;riirk)pn(wmr])
the cooperative ET rate I'“ can be found as

. A’ w, _
= sz(wm"i) = Zri, (20)

where individual rates I'; are given by Eq. (18). As
expected, I'“ scales linearly with the ensemble size.

We now turn to ET between a donor and an acceptor
located at r,; and r,, respectively, near a plasmonic structure
[see Fig. 1(b)]. The rate of direct (Forster) ET due to donor-
acceptor dipole coupling, I'¥ | normalized to the donor
radiative decay rate y,, has the form [15]

Lo 26 [ 8 swmoirts = () 2

where f,(w) and o,(w) are, respectively, the donor
spectral function and the acceptor absorption cross section,
7%, =—n, -Dy(r, —ry) -ng=s,/r, is the transition
matrix element [r,;, =r,—r; is the donor-acceptor
distance and s,; is the orientational factor], and
1S = (9¢*s2,/87) [dwf(w)o,(w)/w* defines the Forster
distance r via the QEs’ spectral overlap. The plasmon ET
channel is included into Eq. (21) by replacing 7°, with
Tog=T% +T", where T?, = —n, - D, (w;r,.ry) -ny is
the plasmon matrix element [34-37]. Typically, the QEs’
spectral bands overlap well within a much broader plasmon
band [6-8], so that l_),, can be taken at the resonance w,,.
Then, the plasmon matrix element is related to the projected
CDOS as T?, = (2i/3)n*w,p(w,;r,.14), and, using the
above chain rule, we obtain the donor-acceptor ET rate as
[y =T%,+T7,, where

r’ 47*r8 _
= L 0 p (@, )P (@ Ta) (22)
Vr 9sad

is the plasmon-assisted ET rate. Importantly, ', is propor-
tional to the LDOS product at the donor and acceptor
positions and, therefore, exhibits a donor-acceptor sym-
metry. To gain more insight, let us express I'” in terms of
individual QE-plasmon ET rates (18) as

re ar ar
ad — ()1, (23)
7r 2Ur) \2Up

where Up = p?s,q/ry is the dipole interaction at the
Forster distance. Factorization of the plasmon-assisted
donor-acceptor ET rate into the rates of constituent proc-
esses (donor-to-plasmon and plasmon-to-acceptor) reflects
the incoherent nature of ET between different QEs.
While Forster ET is efficient for small donor-acceptor
distances, the system transitions to a plasmon-dominated
ET regime as r,; increases [6—8]. The transition onset is
reached when I'?, > T or, using Eqgs. (21) and (23),

ad ~

LVAYAIVANEN 24)
2U,,) \2U0) ™

where U,y = y?s,q/ ri 4 18 the donor-acceptor dipole inter-
action; i.e., when the widths associated with individual ET
processes exceed the direct QE coupling. The explicit
LDOS dependence of the ET rate allows us to derive, in
a general form, the plasmon enhancement factor for Forster
ET: T, /T . After averaging Eq. (22), i.e., replacing p with
p and 52, with 2/3, and using Eq. (1), we obtain

Fa 3 Vaz El’l a 2 Va El‘l 2
Fd:1+_( f| //(r )|2>( d| //(rd)|2)7 (25)

Fad 2 de&‘ |En| de&‘ |En|

where V, , = 47rr3 4/ 3 is the spherical volume associated

with r,,. The ET enhancement factor depends solely on the
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local field distribution in the system and, therefore, can be
varied in a wide range with changing the system shape.

In Fig. 1(b), we plotI',;/T"", for a donor and an acceptor
at a distance d from the opposite poles of a spheroidal NP.
As the NP shape changes from a sphere to a thin nanorod,
the ET rate increases by several orders of magnitude,
reflecting the change in the LDOS that governs the
individual QE-plasmon ET rates [see Fig. 1(a)].

Finally, for ET between the ensembles of donors and
acceptors near a plasmonic structure [58,59], the plasmon
contribution to the ET rate factorizes into a product of rates
for two constituent cooperative processes: an ET from
donors to a resonant plasmon mode followed by an ET
from the plasmon mode to acceptors. The ET rate between
two ensembles is then given by Eq. (23), where individual
rates I', and I'; are replaced with their cooperative counter-
parts I'; and I'Y, given by Eq. (20).

In summary, the LDOS for any nanoplasmonic system
has the universal form (1) in the frequency region domi-
nated by a plasmon resonance. Explicit formulas, in terms
of the plasmon local field, are derived for ET between QEs
and plasmons as well as between donors and acceptors
situated near a plasmonic nanostructure.

This work was supported in part by National Science
Foundation Grants No. DMR-1610427 and No. HRD-
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