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We study the transport properties of frustrated itinerant magnets comprising localized classical moments,
which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquidlike spin
state, which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida
interaction scale. The crossover into this state is characterized by spin structure factor enhancement at wave
vectors smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron
scattering generates a resistivity upturn at decreasing temperatures.
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Certain magnetic metals exhibit a resistivity minimum at
low temperature. The Kondo effect explains this minimum
via an effective exchange interaction J between magnetic
impurities and conduction electrons [1]. Resistivity minima
are also observed in compounds comprising a periodic
array of localized magnetic moments such as 4f-electron
compounds [2]. Because the Kondo effect is induced by
spin-flip impurity scattering, it is expected to be strongly
suppressed in systems with large local magnetic moments
or with strong easy-axis spin anisotropy. Surprisingly,
several compounds in this category, such as Gd2PdSi3
and RCuAs2 (R ¼ Sm, Gd, Tb, and Dy) [3–5] and RInCu4
(R ¼ Gd, Dy, Ho, Er, and Tm) [6,7], exhibit a pronounced
resistivity minimum despite heavy suppression of the
Kondo effect. These compounds are dominated by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction,
which competes against Kondo screening. It is natural to
ask, therefore, if there exists a general mechanism by which
a RKKY interaction can induce a resistivity minimum [8].
In this Letter, we answer the question affirmatively:

frustrated itinerant magnets can exhibit a low-T liquidlike
spin state with enhanced resistivity under quite general
conditions. For simplicity, we focus on a 2D Kondo lattice
model (KLM) with classical local moments (no Kondo
effect) and a small Fermi surface (FS). For a circular FS, the
bare magnetic susceptibility χ0k of the conduction electrons
has a flat area of maxima for k ≤ 2kF (where k≡ jkj and kF
is the magnitude of Fermi wave vectors). The RKKY
interaction thus seeks to enhance the structure factor (SF) in
the region k ≤ 2kF. We demonstrate that this effect leads to
an increase of the electrical resistivity ρ upon decreasing
the temperature over the window T0 ≲ T ≲ jθCWj, where
the magnetic correlation length increases from one lattice
space a (at jθCWj) to ξ ≫ a (at T0) [10]. Frustration

(jθCWj=T0 ≫ 1) is required just to open this window; the
rest is done by the nature of the RKKY interaction. The
average enhancement of the spin SF for wave vectors
connecting points on the FS increases the elastic electron-
spin scattering upon lowering T.
The effect of the RKKY interaction on electron transport

was considered in Refs. [11] and [12]. The sign of the
effect was found to be opposite (metallic) to that found
in this Letter. This difference arises because we consider
low filling, where the sign of dρ=dT can be shown to be
insulating under quite general assumptions about the SF. In
contrast, Refs. [11] and [12] considered a large FS, where
the effect can have either sign depending on details of the
electronic structure.
We first present an analytical derivation of the effect for

the weak-coupling (WC) limit [JηðεFÞ ≪ 1, where ηðεFÞ is
the density of states at the Fermi level]. The resistivity is
evaluated in the Born approximation and the spin SF is
obtained in two ways: from a high-T expansion [13] and
by using the spherical approximation [14,15]. Finally, we
perform large-scale simulations of the full KLM. We use a
variant of the kernel polynomial method (KPM) [16–18]
to integrate Langevin dynamics (LD) and to evaluate the
resistivity using the Kubo formula [19]. Our KPM-LD
simulations on a triangular lattice (TL) with 2562 sites
confirm the WC results and generalize them to the
intermediate and strong-coupling regimes.
We consider the KLM,

H¼
X
k;σ

ðεk−μÞc†kσckσþ
Jffiffiffiffi
N

p
X

q;k;σ;σ0
c†qσσσσ0cqþkσ0 ·Sk: ð1Þ

The operator c†kσðckσÞ creates (annihilates) an itinerant
electron with momentum k and spin σ. εk ¼ −

P
δ tδe

ik·δ
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is the bare electronic dispersion relation with chemical
potential μ and hopping amplitudes tδ between sites
connected by δ. The second term is the exchange inter-
action between the conduction electrons and the local
magnetic moments Sk in Fourier space. We assume
classical moments with magnitude jSij ¼ 1 (σ is the vector
of the Pauli matrices).
The conduction electrons can be integrated out in the

WC limit by expanding in the small parameter JηðεFÞ. The
resulting RKKY spin Hamiltonian is

HRKKY ¼ −J2
X
k

χ0kSk · Sk̄ ð2Þ

with k̄≡ −k and Sk ¼
P

le
ik·rlSl=

ffiffiffiffi
N

p
(N is the total

number of lattice sites). The effective coupling constant in
momentum space is −J2χ0k with χ

0
k ¼ T

P
q;ωn

G0
q;ωn

G0
qþk;ωn

,
where ωn ¼ ð2nþ 1ÞπT are the Matsubara frequencies and
G0

k;ωn
¼ fiωn − ½εk − μ�g−1 is the bare Green’s function.

Then, the RKKY interaction favors magnetic orderings that
maximize χ0k.
The electrons feel an effective potential produced by the

spin configuration through the exchange interaction J. If
the system orders at low-enough temperature ðT ≤ TcÞ, the
periodic array of spins only produces coherent electron
scattering, which does not contribute to ρ [20]. However,
the situation changes above Tc because the magnetic
moments develop liquidlike correlations, which produce
incoherent elastic electron-spin scattering. Within the Born
approximation, the scattering cross section is proportional
to the spin SF,

SðkÞ ¼ 1

N

X
jl

eik·ðrj−rlÞhSj · Sli ¼ hSk · Sk̄i; ð3Þ

where h� � �i denotes the thermodynamic average. SðkÞ
satisfies the sum rule

P
kSðkÞ ¼ N because jSij ¼ 1.

Unlike the high-T gas regime, characterized by a nearly
k-independent spin SF, short-range magnetic correlations
appear in the liquid regime. The RKKY interaction is
expected to enhance SðkÞ for wave vectors connecting
points on the FS because those are the processes that more
effectively reduce the electronic energy. Given that the
same processes contribute to the incoherent elastic scatter-
ing in the paramagnetic state, ρ should increase upon
reducing T from the high-T gas regime to the T0 ≲ T ≲
jθCWj ∼ J2=t liquidlike regime.
To illustrate this point we will consider the simple case

of a circular FS, relevant for most 2D lattices with a low
electron (hole) filling fraction [22]. The dispersion relation
near the bottom (top) of the band can be approximated by
εk ≃ k2=2m. The resulting RKKY Hamiltonian is strongly
frustrated: any spiral with wave vector k is a ground state as
long as k ≤ 2kF. The RKKY interaction favors these mag-
netic configurations because those are the only spirals that
can scatter electrons between points q and qþ k on the FS.

Within the Born approximation, the inverse relaxation
time for elastic scattering is

1

τkF
¼ 4πJ2

N

X
k

δðεF − εkÞSðk − kFÞð1 − cos θkF;kÞ: ð4Þ

This expression is further simplified if SðkÞ ¼ SðkÞ, which
is a good approximation for low carrier filling fractions in
the integration domain k < 2kF:

1

τkF
¼ 4πmJ2c

Z
1

0

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p Sð2kFxÞ; ð5Þ

where c is a number that depends on the lattice, e.g.,
c ¼ ffiffiffi

3
p

=π2 for a TL. The T dependence of τkF is then
determined by the variation of SðkÞ for k ≤ 2kF.
We will use two independent approaches for comput-

ing the T dependence of SðkÞ in the gas and liquidlike
regimes. The first approach is a straightforward high-T
expansion [13]:

SðkÞ ¼ 1þ K ~χk þ K2½~χ2k − h~χ2i� þ K3½~χ3k − h~χ3i

− 2~χkh~χ2i þ
2

5N2

X
qq0

~χq ~χq0 ~χk−q−q0 � ð6Þ

with K ¼ 2J2β=3, ~χk ¼ χ0k − hχi, and h~χni ¼ P
k ~χ

n
k=N.

Figure 1(a) shows the bare magnetic susceptibility for the
isotropic FS under consideration. Figure 1(b) shows the
bare susceptibility for a TL with nearest-neighbor (NN)
hopping t and an electron filling fraction n ¼ 0.09 (the
mass is m ¼ 1=3t). As expected, the effect of the small C6

lattice anisotropy (of order k6F) is to split the large global
maxima degeneracy that would correspond to an isotropic
χ0k. We will see that this splitting does not alter significantly
the window of stability of the liquidlike regime. Figures 1(c)
and 1(d) show the momentum dependence of the SF at
different temperatures obtained from Eq. (6) for the isotropic
FS and the triangular KLM, respectively.
To understand the insulating sign of the temperature

dependence of 1=τ, it suffices to analyze the second term in
Eq. (6), which gives the leading order contribution to the
momentum dependence of SðkÞ. Since χk > 0, the pre-
factor of the 1=T term in 1=τ is positive as long as the
average of χk over the interval ð0; 2kFÞ in Eq. (5) exceeds
the contribution from hχi, which is just a constant times
hχi. Suppose that χ0k does not vary dramatically in the
interval ð0; 2kFÞ, where it can be estimated by some typical
value χ̄, and falls off quickly for kF ≪ k ≪ b, where b ∼ 1

is the reciprocal lattice spacing. Then, the contribution of χ0k
to the integral in Eq. (5) is on the order of χ̄. On the other
hand, hχi is an average value over the entire Brillouin zone,
normalized by its area. Therefore, hχi ∼ χ̄ðkF=bÞ2, and the
contribution from χ0k is reduced only by a small correction
of order ðkF=bÞ2 [23].
Compared with the high-T expansion, the so-called

spherical approximation [14,15] is less well controlled,
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but can be applied to a wider temperature range. The hard
constraints jSij ¼ 1 are replaced with a global soft con-
straint

P
ijSij2 ¼ N, which renders the spin Hamiltonian

quadratic and can be easily integrated to give SðkÞ ¼
f3T=2½ΔðTÞ − J2 ~χk�g, where ΔðTÞ is determined from the
self-consistency equation [23]: 1

N

P
kJ

2=½ΔðTÞ−J2 ~χk� ¼K.
Figures 1(e) and 1(f) show that the results for the isotropic
FS and the triangular KLM agree with Figs. 1(c) and 1(d)
down to T ≃ 0.03J2=t, at which point the high-T expan-
sion fails.
The electrical conductivity is given by

σ ¼ −
e2

2

Z ffiffiffi
3

p
d2k

8π2
τkv2k

dfðεkÞ
dεk

≃ 3
ffiffiffi
3

p
e2

8π
tk2FτkF : ð7Þ

Replacing τkF with its expression given in Eq. (5), we
obtain

ρðTÞ ¼ 4

π
ρ0

Z
1

0

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p Sð2kFxÞ; ð8Þ

where ρ0 ¼ 8πJ2=ð3tekFÞ2. Figure 2(a) compares the
resistivity curves ρðTÞ obtained from the high-T expansion
and from the spherical approximation. As expected from
the comparison of the magnetic SF, the resistivity curves
practically coincide down to T ≃ 0.03J2=t. Both curves
confirm our main conjecture dρ=dT < 0 because the
system develops stronger spin-spin correlations for wave
vectors k ≤ 2kF. This increase should be interrupted at
T ¼ T0 where precursors of magnetic Bragg peaks develop
from the broad peaks of the liquid state and the Born
approximation ceases to be valid.
The analytical approach that we have used for computing

ρðTÞ is only valid in the WC regime. Away from the WC
regime, the RKKY theory is no longer valid as an effective
low-energy theory for the KLM and the Born approxima-
tion is no longer justified. Moreover, the two different
approaches that we used for computing SðkÞ fail at low T.
Our calculations then need to be complemented with
numerical simulations valid for any coupling strength
and down to arbitrarily low T.
We perform KPM-LD simulations on a 256 × 256 TL

with small electron filling n ¼ 0.09 and J=t ¼
ð0.2; 1.0; 1.5; 2.0Þ [25]. We integrate the dimensionless
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FIG. 2. (a) Temperature dependence of the resistivity for a
triangular KLM with NN hopping (t ¼ 1) and filling fraction
n ¼ 0.09. The lines correspond to calculations based on the Born
approximation [see Eq. (8)] and different analytical approaches
for computing the temperature dependence of SðkÞ. The symbols
correspond to the results of KPM-LD simulations rescaled by
ρðT ¼ J2=tÞ. (b) Resistivity curve (in units of h=e2) obtained
from KPM-LD simulations for different coupling strengths [24].

FIG. 1. Bare electronic susceptibility for (a) a 2D electron gas
with isotropic dispersion εk ¼ k2=2m, and (b) a TL with NN
hopping (t ¼ 1) and filling fraction n ¼ 0.09. Panels (c)–(f) show
the momentum dependence of SðkÞ at temperatures T ¼
f0.03; 0.06; 0.45gJ2=t represented by solid, dashed, and dotted
curves, respectively. Panels (c) and (d) are obtained from the
high-T expansion in Eq. (6), while panels (e) and (f) are obtained
from the spherical approximation. Each panel is calculated using
the bare magnetic susceptibility vertically above it. For panels (d)
and (f) we assume SðkÞ≃ SðkÞ, which is correct to within 1%
relative error.
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stochastic Landau-Lifshitz dynamics with a unit damping
parameter using the Heun-projected scheme [26] for a total
of ð2 × 103; 4 × 103; 6 × 103; 1 × 104Þ time steps of dura-
tion Δτ ¼ ð100; 10; 5; 2Þ. We estimate the effective spin
forces using the gradient transformation described in
Ref. [17]. To decrease the stochastic error, we use the
probing method of Ref. [27] with R ¼ 128 random vectors.
The Chebyshev polynomial expansion order is M ¼ 500.
To calculate the resistivity, we expand the Kubo-Bastin
formula [19,28] using the KPM [16,29] with M ¼
ð6000; 1000; 1000; 500Þ [30]. For each temperature, we
average the longitudinal conductivity over ten snapshots
separated by (100,100,200,500) integration time steps.
Figure 2(b) shows the numerical ρðTÞ results for the

different J=t values. Frustration decreases with J=t because
higher order contributions (beyond RKKY level) split the
degeneracy for k ≤ 2kF. For the strong-coupling limit J ≫ t
the low-energy sector of H can be mapped into a double-
exchange model, which favors ferromagnetic (FM) ordering
at a critical temperature Tc comparable to jθCWj. Given that
the temperature window with liquidlike correlations dimin-
ishes as a function of J=t, the relative low-temperature upturn
of ρðTÞ should also decrease, as shown in Fig. 2(b).
In the intermediate-coupling regime J=t ¼ 1, 1.5, and 2,

the low-T upturn of ρðTÞ reaches a maximum at temper-
ature T0 and drops rapidly for T < T0. This crossover
corresponds to the enhanced SF at wave vectors k < 2kF.
Figures 3(a) and 3(b) show the temperature dependence of
SðkÞ for J=t ¼ 1 and 2, respectively. The roughly uniform
weight of SðkÞ for k < 2kF starts redistributing below
T ≈ 0.006J2=t. When J=t ≈ 1 we observe the formation
of a ring in Fourier space at T ≈ T0. This disordered
phase is dynamically trapped at the lowest temperatures,
T ≲ 0.002J2=t. As expected from the strong-coupling
analysis, its radius k0 < 2kF decreases with J=t. For larger
couplings J=t≳ 2 the FM phase clearly wins at low T. We
note that, for T > T0, there is strong backward scattering
produced by the k≲ 2kF components of SðkÞ. The resis-
tivity drops below T0 because the backscattering contri-
bution (k ¼ 2kF) is reduced by the formation of a ring at
k0 < 2kF [see the integrand of Eq. (8)].
Here, we have only considered the resistivity component

arising from electron-spin scattering. Electron-electron
and electron-phonon scattering also contribute to ρ in real
materials. These additional contributions increase with T,
whereas we have argued that the electron-spin scattering
produces a negative dρ=dT. The combination thus yields
a resistivity minimum [31]. Although we have assumed
classical local spins (S → ∞), our results can be extended
to arbitrary S. The generalization of Eq. (6) is straightfor-
ward [32]. The main qualitative change is the Kondo effect
expected for quantum spins and the antiferromagnetic
exchange J. This effect becomes apparent by applying
the T-matrix formalism up to order J3 to the KLM [23],
which yields

ρðTÞ ≈ ρRKKYðTÞ
�
1–8JηðϵFÞ ln

�
kBT
D

��
; ð9Þ

where ρRKKYðTÞ is given in Eq. (8). ρRKKYðTÞ becomes T
independent at T ≫ jθCWj, so the only T dependence arises
from the Kondo effect. According to Eq. (9), the Kondo
logarithmic behavior crosses over into a power law [23]

ρRKKYðTÞ ∼
a

T − T� þ b; ð10Þ

upon entering the range T0 ≲ T ≲ jθCWj. The qualitatively
different T dependence should allow us to distinguish
between the two mechanisms for the resistivity upturn.
Moreover, the upturn produced by the RKKY mechanism
should be accompanied by a corresponding upturn in the
correlation length ξ. Indeed, moderately frustrated materi-
als, such as Gd2PdSi3 and RCuAs2 (R ¼ Sm, Gd, Tb, and
Dy) [3–5], exhibit a nonlogarithmic resistivity upturn right
above the Néel temperature. According to Refs. [33,34], the
resistivity minimum of the pyrochlore oxides Pr2Ir2O7 and
Nd2Ir2O7 is also caused by spin-spin correlations described
by the spin ice model.
Furthermore, the Kondo effect is absent in transition

metal oxides, where J is FM (Hund’s coupling). Our results
indicate that the resistivity upturn persists in the inter-
mediate coupling regime, relevant to these materials.
Indeed, a resistivity upturn has been observed in
ðGa1−xMnxÞAs [35,36] and manganites [37] above the
FM transition temperature Tc.
Our key conclusion is that the RKKY interaction

enhances the elastic electron-spin scattering by increasing
the magnetic SF for wave vectors connecting points on the
FS. Assuming that this enhancement eventually leads to
Bragg peaks (for T < Tc), which do not produce incoherent
scattering, frustration is necessary to open a wide enough
temperature window (liquidlike regime) over which the

FIG. 3. Structure factor SðkÞ for three temperatures at inter-
mediate couplings (a) J=t ¼ 1 and (b) J=t ¼ 2. At T ≈ 0.02J2=t,
SðkÞ is nearly uniformly distributed in the disk k ≲ 2kF. Around
T ≈ 0.006J2=t the weight begins shifting toward a k≲ 2kF radius
ring (J=t ≈ 1) or k ¼ 0 FM order (J=t≳ 2).
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resistivity upturn becomes noticeable. Although we have
focused on 2D systems with a small FS, the conclusion
applies generally to frustrated itinerant magnets, provided
that χ0k is larger on average for wave vectors k connecting
points on the FS.
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