
Floquet Realization and Signatures of One-Dimensional Anyons in an Optical Lattice

Christoph Sträter,1 Shashi C. L. Srivastava,1,2 and André Eckardt1,*
1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

2Variable Energy Cyclotron Centre, 1/AF Bidhan nagar, Kolkata 700 064, India
(Received 26 February 2016; published 10 November 2016)

We propose a simple scheme for mimicking the physics of one-dimensional anyons in an optical-lattice
experiment. It relies on a bosonic representation of the anyonic Hubbard model to be realized via lattice-
shaking-induced resonant tunneling against potential offsets, which are created by a combination of a
lattice tilt and strong on-site interactions. No lasers additional to those used for the creation of the optical
lattice are required. We also discuss experimental signatures of the continuous interpolation between
bosons and fermions when the statistical angle θ is varied from 0 to π. Whereas the real-space density of the
bosonic atoms corresponds directly to that of the simulated anyonic model, this is not the case for the
momentum distribution. Therefore, we propose to use Friedel oscillations in the density as a probe for
continuous fermionization of the bosonic atoms.
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Fundamental particles in nature are either bosons or
fermions. Bosons obey Bose-Einstein statistics such that
their joint wave function is symmetric with respect to the
exchange of two particles, whereas fermions obey Fermi-
Dirac statistics and the wave function picks up a minus sign
under particle exchange. In two dimensions, also anyons
would be possible fundamental particles. They obey a
fractional statistics that interpolates between bosonic and
fermionic behavior [1–5]. If two anyons exchange their
position, the wave function pics up a phase. Practically,
anyons play a major role as quasiparticles of topologically
ordered states of matter such as fractional-quantum-Hall
states [6–8], with potential applications in robust topologi-
cal quantum information processing [9–16]. As shown
by Haldane, for quasiparticles the concept of fractional
statistics can be extended to arbitrary dimensions [17].
One-dimensional (1D) anyons have recently attracted an
increased attention [18–33], including two proposals for
their implementation with bosonic atoms in an optical
lattice [34,35]. These proposals are based on mapping the
anyons via a generalized Jordan-Wigner transformation to
bosons with a density-dependent tunneling parameter to be
engineered by laser dressing of internal atomic degrees of
freedom. However, an experimental realization has not yet
been achieved.
In the following, we propose a simple alternative scheme

for the experimental realization of 1D anyons, based on
time-periodic forcing. It is feasible in existing experimental
setups and, in contrast to earlier proposals, does neither rely
on the internal atomic structure nor require any lasers
additional to those creating the optical lattice. Our scheme
is based on engineering an occupation-dependent Peierls
phase of the tunneling matrix elements by means of
coherent lattice-shaking-assisted tunneling against poten-
tial offsets created by a combination of a static potential tilt

and strong on-site interactions. The scheme, which is
applicable in the low-density regime, also permits us to
effectively tune the interactions between the anyons.
The fact that periodic forcing has recently been employed
already experimentally for engineering both number-
dependent tunneling amplitudes [36,37] and non-number-
dependent Peierls phases [38–47] (see also Ref. [48] for an
overviewof Floquet engineering in optical lattices) indicates
that the proposed creation of number-dependent Peierls
phases by such means is feasible.
We, moreover, discuss experimental signatures of the

anyonic model in its ground state using exact diagonaliza-
tion. Considering small chains, as they can be realized in
quantum-gas microscopes [49,50], we monitor experimen-
tally measurable observables that directly reflect anyonic
properties and are invariant under the Jordan-Wigner
transformation from anyons to bosons. This excludes the
momentum distribution, which is altered by the trans-
formation so that the measurable bosonic momentum
distribution does not correspond to that of the anyons. It
includes, however, on-site densities and their correlations,
as well as the second Rényi entropy of the subsystem given
by the first l sites. We show that in small systems Friedel
oscillations can serve as a signature for the continuous
fermionization occurring when the statistical angle θ is
varied from 0 to π.
The Hubbard model of one-dimensional lattice anyons

with on-site interactions [34] takes the form

Ĥ ¼ −J
XM
j¼2

ðâ†j âj−1 þ H:c:Þ þ U
XM
j¼1

n̂jðn̂j − 1Þ: ð1Þ

Here, the annihilation and creation operators, âj and â
†
j , for

anyons at site j obey the commutation relations âjâ
†
k −

e−iθsgnðj−kÞâ†kâj ¼ δjk and âjâk − e−iθsgnðj−kÞâkâj ¼ 0,
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which are parametrized by the statistical angle θ. Here
sgnðkÞ ¼ −1, 0, 1 for k < 0;¼ 0; > 0, respectively, so that
on-site the particles behave like bosons. Thus, even for
θ ¼ π, these lattice anyons are just pseudofermions,
since many of them are allowed to occupy the same site.
Following Refs. [23,34], the anyonic model can be mapped
to the bosonic model

Ĥ ¼ −J
XM
j¼2

ðb̂†j b̂j−1eiθn̂j þ H:c:Þ þ U
XM
j¼1

n̂jðn̂j − 1Þ; ð2Þ

via the generalized Jordan-Wigner transformation
âj ¼ b̂j exp ðiθ

P
M
k¼jþ1 b̂

†
kb̂kÞ. Here the anyonic exchange

phase has been translated to a density-dependent Peierls
phase: when tunneling one site to the right (left), a boson
pics up a phase given by θ (−θ) times the number of
particles occupying the site it jumps to (from). Thus, if two
particles pass each other via two subsequent tunneling
processes to the right (left), the many-body wave function
pics up a phase of θ (−θ). These tunneling processes are
illustrated in Fig. 1(a).
For the realization of the number-dependent tunneling

phase, we consider bosons in a tilted periodically forced
lattice described by the Hamiltonian

ĤðtÞ ¼
X
j

�
−J0½b̂†j b̂j−1 þ H:c:� þU0

2
n̂jðn̂j − 1Þ

þ Vjn̂j þ ½Δþ FðtÞ�jn̂j
�
: ð3Þ

Here, J0 > 0 and U0 > 0 denote the bare tunneling and
interaction parameters, Δ > 0 characterizes a strong poten-
tial tilt, Vj captures possible weak additional on-site
potentials, and FðtÞ ¼ Fðtþ TÞ incorporates a homo-
geneous time-periodic force of angular frequency ω ¼
2π=T with vanishing cycle average 1=T

R
T
0 dtFðtÞ ¼ 0.

It can be implemented as an inertial force FðtÞ=a ¼
−mẍðtÞ, with lattice constant a, by shaking the lattice
position xðtÞ back and forth. We require the resonance
conditions

Δ ¼ ℏω; U0 ¼ 2ℏωþU; ð4Þ
as well as the high-frequency conditions

J0; jUj; jVj − Vj−1j ≪ ℏω; ð5Þ
where we have introduced the small interaction detuningU.
The largest share of the on-site energy is then given by
Ĥ0 ¼ ℏω

P
j½n̂jðn̂j − 1Þ þ jn̂j�, so that tunneling is ener-

getically suppressed. Namely, when a particle tunnels
from j − 1 to j this energy changes by ℏων̂j;j−1 with
ν̂j;j−1 ¼ 2ðn̂j − n̂j−1Þ þ 3 ¼ �ℏω;�3ℏω;…. However,
coherent tunneling processes can be induced by time-
periodic forcing as ν-“photon” processes, where the drive
provides or absorbs jνj energy quanta ℏω. They are
described by an effective tunneling matrix element
[51,52], which, through ν̂j;j−1, will depend on the

occupation numbers. Such number-dependent resonant
tunneling has recently been investigated both experimen-
tally [36] and theoretically [53,54] (see also Ref. [55]). As
we will show now, it can be used to achieve the number-
dependent tunneling phases appearing in Eq. (2).
Using the time-periodic unitary operator

ÛðtÞ¼ exp

�
−i
X
j

½ωtn̂jðn̂j−1Þþfωt−χðtÞgjn̂j�
�
; ð6Þ

where χðtÞ ¼ ðam=ℏÞ_xðtÞ so that ℏ_χðtÞ ¼ −FðtÞ, we can
perform a number-dependent gauge transformation.
It integrates out the strong on-site terms Ĥ0 as well as
the periodic force, but leads to number-dependent
tunneling terms −J0b̂†j b̂j−1 exp½iωtν̂j;j−1 − iχðtÞ� in the

FIG. 1. (a) Basic number-dependent tunneling processes
involving up to two bosons. We only depict rightwards tunneling,
the leftwards processes are Hermitian conjugated. (b) Realization
as 1, 3, and -1 photon processes in a tilted lattice with strong
on-site interactions U0 (b). We depict processes for tunneling
rightwards; tunneling leftwards is simply described by con-
jugated processes. (c) Parameter curves that fulfill
jJeffð1Þj ¼ jJeffð3Þj. The color of the lines represents the
statistical angle θ ¼ arg½Jeffð3Þ=Jeffð1Þ� and their thickness
the tunneling amplitude J ¼ jJeffð1Þj. (d),(e) θ and J following
the lines in (b) in the direction of the arrow.
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new Hamiltonian Û†ðtÞĤðtÞÛðtÞ − iℏÛ†ðtÞ∂tÛðtÞ.
Averaging over the rapidly oscillating phase factor by
integrating over one driving period (corresponding to the
leading order of a high-frequency approximation [61–63]),
we obtain the effective time-independent Hamiltonian

Ĥeff ¼ −
X
j

ðb̂†j b̂j−1Jeffðν̂j;j−1Þ þ H:c:Þ

þ
X
j

�
U
2
n̂jðn̂j − 1Þ þ Vjn̂j

�
: ð7Þ

It contains the number-dependent tunneling parameter

JeffðνÞ ¼
J0

T

Z
T

0

dt exp (iωtν − iχðtÞ); ð8Þ

and the tunable interaction parameter U ¼ U0 − 2ℏω,
which can take both negative and positive values.
The effective tunneling matrix elements JeffðνÞ should

reproduce the number-dependent tunneling parameters of
Eq. (2). We restrict ourselves to the low-density regime,
where the dominant processes involve one or two bosons.
These processes are those depicted in Fig. 1(a) as well as
the Hermitian conjugated processes for tunneling leftwards.
As illustrated in Fig. 1(b), these processes are associated
with different potential energy changes νℏω. Tunneling
rightwards from a singly or doubly occupied site onto an
empty site corresponds to ν ¼ 1 or ν ¼ −1, respectively,
and should be described by the parameter,

Jeffð1Þ ¼ Jeffð−1Þ ¼ Jeiϕg ; ð9Þ
with real tunneling amplitude J and arbitrary Peierls phase
ϕg reflecting the freedom of gauge. Tunneling rightwards
from an empty site onto an occupied site is associated with
ν ¼ 3 and the corresponding tunneling parameter should
carry an additional phase θ,

Jeffð3Þ ¼ Jeiθþiϕg : ð10Þ
In order to fulfill conditions (9) and (10), we make the

simple ansatz

χðtÞ ¼ A cosðωtÞ þ B cosð2ωtÞ ð11Þ
for the (integrated) driving force (other choices are pos-
sible). This ansatz already ensures that Jeffð1Þ ¼ Jeffð−1Þ.
The additional constraint jJeffð3Þj ¼ J ¼ jJeffð1Þj defines
lines in the A − B plane, as can be seen in panel (c) of
Fig. 1. The thickness and the color of the plotted lines
represents the tunneling amplitude J and the statistical
angle θ, respectively. The variation of J and θ along the
lines is also plotted in panels (d) and (e). Whereas lines 2
and 3 cover the full range jθj ∈ ½0; π�, line 1 roughly allows
us to realize jθj ∈ ½0.4π; π�.
A clear signature of the continuous fermionization of the

system with increasing θ is the formation of a Fermi sea
in the momentum distribution of the anyons (see, e.g.,
Ref. [32]). However, in an experiment one cannot measure
the anyonic momentum distribution, but only the bosonic

one, which, due to both the Jordan-Wigner transformation
and the gauge transformation (6) differs from that of the
anyons. Therefore, in the following we will consider only
such observables that are invariant under these transforma-
tions. These include the densities ni ¼ hn̂ii, the two-
particle correlations χi;j ¼ hb†i b†jbjbii=ðninjÞ, and also
the second Rényi entropy characterizing the purity of the
reduced density matrix ρ̂l of the subsystem given by
the first l sites j ¼ 1;…;l, Sl ¼ − ln Trðρ̂2lÞ [64]. In
the following, we will focus on ground-state properties,
so that Sl is an entanglement entropy (as it has been
measured recently in a bosonic chain [49]).
We compute ni, χi;j, and Sl using exact diagonalization

both for the ideal model (2) and the effective Hamiltonian
(7). We consider N ¼ 4 bosons on M ¼ 20 sites, corre-
sponding to a density of n ¼ 0.2. The effective tunneling
matrix elements (8) were obtained for the driving function
corresponding either to path 1 of Fig. 1(c) or to path 2, in
case the desired statistical angle jθj is not available in path
1. Despite the fact that they reproduce the ideal tunneling
matrix elements only for processes involving one and two
particles, we find very good agreement between the ideal
and the effective model: In Figs. 2(a) and 2(b), we plot ni
and Sl for the effective model with U ¼ 0 and various
anyonic angles θ. The results match very well with those
obtained for the ideal model shown in Figs. 2(c) and 2(d).
For nonzero on-site interactions, U=J ≡ tanðϕ=2Þ the
agreement is equally good, so that we only plot the results
for the ideal model in Figs. 2(e) and 2(f).
In Fig. 2(c), we can observe that the density distribution

flattens in the center, when the statistical angle is switched
on. This effect can be understood by noting that the
scattering properties resulting from the density dependent
tunneling resemble those of repulsive on-site interactions
[35], which favor a flat density. For large θ, the density
becomes modulated, with one maximum for each particle in
the system. These oscillations correspond to Friedel oscil-
lations, which are a hallmark of fermionic behavior [65].
They are a finite-size effect induced by the hard-wall
boundary conditions (as they can be realized in quantum-
gas microscopes). Their wavelength is roughly given by
π=kF, with Fermi wave number kF, corresponding to the
average particle distance, which in our system is given by
n−1 ¼ 5 lattice constants. Generally, Friedel oscillations
occur in the vicinity of localized defects. Their buildup
allows us to monitor the continuous fermionization of the 1D
anyons in a system of bosons with number-dependent
tunneling. The oscillations are also clearly visible in the
entanglement entropy [Fig. 2(d)]. An intuitive explanation is
that the maximum corresponds to the position of a particle,
whose delocalization within the maximum contributes to the
entanglement between the left and right subsystems.
In Figs. 2(e), 2(f), showing data for a system with

significant on-site interactions U=J ¼ tanðπ=4Þ ¼ 1,
the fermionic signatures occur already for smaller θ.
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This observation is consistent with the well-known fact
that increasing the on-site interactions is another way of
approaching fermionic behavior [66]. This is illustrated
also in Figs. 2(g), 2(h) showing data for plain bosons
(θ ¼ 0) and different U=J. In the hard-core limit (ϕ ¼ π),
the bosons can be mapped to fermions. Despite the fact that
1D anyons only become pseudofermions for θ ¼ π, the
data for θ ¼ π in Figs. 2(c), 2(d) agree very well with those
for ϕ ¼ π in Figs. 2(g), 2(h). This suggests that for low
densities pseudofermions behave like true fermions.

This is confirmed also by the correlations shown in
Fig. 2(i). Their diagonal elements χj;j ¼ hn̂jðn̂j − 1Þi=n2j ,
which are a measure for double occupation, vanish for
θ ¼ π, even though pseudofermions locally behave like
bosons. Simulations show that pseudofermions behave like
fermions up to a filling of about one-third [54]. This is also
the filling where the low-density description, stating that
driven bosons behave like anyons, is found to break
down [54].
The buildup of Friedel oscillations requires the system

to be quantum degenerate, i.e., temperatures T well below
the Fermi energy EF ¼ 2J½1 − cosðkFÞ� ≈ Jπ2n2, so that
the thermal wavelength is large compared to the mean
particle distance. Computing canonical expectation values
for N ¼ 4 anyons on M ¼ 20 sites for the finite temper-
ature T =J ¼ 0.1 (corresponding to a von Neumann
entropy per particle of s ≈ 0.20, which is accessible in
a system of spinless bosons), we find well-pronounced
Friedel oscillations [54]. In an experiment, the low-
entropy state of the effective Hamiltonian (7) has to be
prepared starting from a low-entropy state of the undriven
system. Let us assume that initially Δ ¼ F ¼ 0 and
the system is prepared in a Mott-insulator state
jSi ¼ Q

j∈Sb̂
†
j jvaci, with the set S containing N lattice

sites and jvaci denoting the vacuum state. This is the
asymptotic ground state in the presence of an external
potential Vj ¼ −Wδj∈S in the limit W, U0 ≫ J. For finite
U, this is also the ground state of the effective model (7),
with JeffðνÞ ¼ 0. Thus, we can adiabatically melt the Mott
insulator into the ground state of Ĥeff by smoothly
ramping up the forcing, i.e., the JeffðνÞ, and then con-
tinuously switching off the external potential W. In order
to minimize the mass transport during this adiabatic
process, it is useful that S contains equally spaced lattice
sites, so that Vi describes a superlattice. We have
simulated this protocol integrating the time evolution of

FIG. 2. Ground-state properties: Density ni and entanglement
entropy Sl of the first l sites. Either the anyonic angle θ is varied
(a)–(f) or the relative interaction strength U=J ¼ tanðϕ=2Þ
(g),(h). Computed for the effective Hamiltonian (7) (a),(b), the
ideal model (2) (c)–(f), and plain bosons (g),(h). (i) Two-particle
correlations function χi;j ¼ hb†i b†jbjbii=ðninjÞ for various
anyonic angles θ and interaction strengths U=J ¼ tanðϕ=2Þ for
the effective Hamiltonian (7).

FIG. 3. State preparation for a system of 4 particles on 20 sites,
simulated using the full time-dependent Hamiltonian (3).
(a) Preparational protocol. (b) Density distribution of the final
state compared to the ground state of the anyon model (1). We
have chosen realistic parameters for an optical lattice of depth
V0 ¼ 10ER giving J0 ¼ 0.0192ER, where the recoil energy ER
typically corresponds to frequencies of a few kHz [67]. Moreover,
we chose ℏω ¼ ER − U (well below the band gap of ≈5ER),
U ¼ 0.5J, W ¼ 0.6ER, t1 ¼ 50T, and t2 ¼ 1240Tð1300TÞ ≈
50ℏ=J for θ ¼ 0.7πðπÞ.
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the full time-dependent Hamiltonian (3) and find excellent
agreement between the final state and the ground state of
Heff [Fig. 3]. This confirms both a description in terms of
the effective Hamiltonian and the proposed preparation
scheme.
In summary, we proposed a simple scheme for the

realization of 1D anyons, which is feasible in existing
experimental setups. It is based on Floquet engineering a
system of bosonic atoms with number-dependent tunneling
phases. We, moreover, showed that Friedel oscillations can
serve as a directly measurable signature for the continuous
fermionization of the anyons.
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