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The development, characterization, and control of N-photon sources are instrumental for quantum
technological applications. This work constitutes a step forward in this direction, where we propose a
cavity quantum electrodynamics setup designed for the generation of photon pairs. We identify both the
regime where our system works as a deterministic down-converter of a single input photon and as an
optimal two-photon source under weak continuous driving. We use both the scattering and master equation
formalisms to characterize the system, and from their connection naturally arises a physical criterion
characterizing when weakly driven systems behave as continuous antibunched two-photon sources. We
also show that the outgoing photons share nontrivial quantum correlations in general. We provide a specific
implementation based on state-of-the-art superconducting circuits, showing how our proposal is within
the reach of current technologies. As an outlook, we show the proposal can be extended to achieve
deterministic conversion of a single photon into N photons.
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Single-photon sources [1] are one of the cornerstones of
many quantum information protocols [2,3]. The success in
the fabrication of these sources is built upon the simple
nonlinear systems required, e.g., a two-level system [4], and a
well-established characterization through the well-known
second-order coherence function [5] gð2ÞðτÞ (see definition
below), which yields gð2Þð0Þ ¼ 0 for a perfect single-photon
source. The extension to N-photon sources lies also at the
heart of many recent quantum technological applications
such as the generation of NOON states [6] instrumental for
quantum metrology [7], beating the diffraction limit [8], or
even biological purposes [9,10]. There exist several methods
to generate multiphoton states, e.g., probabilistic schemes
using down-converted photons [11] and postselection
[12–14], but at the price of an exponentially small proba-
bility. An alternative consists in using atomlike systems
strongly coupled to cavities [15] or biexciton states in
quantum dots systems [16–18]. The former has shown
spectacular advances in themicrowave regime for intracavity
fields [19,20], but its extension to traveling photons is so far
limited to single photons [21–24]. Therefore, the efficient
generation of multiphoton states is still a challenge which
attracts a lot of attention, with new theoretical proposals that
use Purcell enhancement on dressed atomic systems [25,26]
or atomic ensembles in waveguide QED [27]. Moreover, the
question on how to characterize continuous multiphoton
sources in a more economical way than performing full-state
tomography, is still open, with many different definitions in
the literature [25,26,28–31].
In this Letter, we introduce a cavity quantum electrody-

namics setup that deterministically converts a single photon

into an entangled two-photon state and does so within the
bad-cavity limit, that is, without requiring coherent inter-
actions to be stronger than cavity or emitter damping.We also
analyze the regime when the system is weakly driven and
show that the condition for deterministic down-conversion
also leads to an optimal continuous source of photon pairs.
From the connection between these two regimes, we also
propose a general criterion that characterizes when such
weakly driven systems behave as emitters of photon pairs in
well-defined pulses. Finally, we discuss possible implemen-
tations focusing on currently available circuit QED archi-
tectures and comment on the possibility to generalize our
results for the generation of N-photon states.
Let us first consider the general scheme for a source

depicted in Fig. 1(a). A nonlinear system S is coupled to
two (one-dimensional) baths [32]. The pump bath is used to
excite the system with, e.g., a continuous driving or pulses
with well-defined photon number, while the emitted light
is monitored through the signal bath. Working in a picture
rotating at some characteristic frequency of the system kp
that we will choose later (using ℏ ¼ c ¼ 1), and denoting
by fpk; skgk∈R the annihilation operators of the baths,
the Hamiltonian is given by H ¼ HS þHB þHSB, with
Hamiltonians HS and HB¼

R
dkkðp†

kpkþ s†kskÞ for system
and bath, respectively, which interact through

HSB ¼
Z

dk

� ffiffiffiffiffiffi
γp
2π

r
p†
kap þ

ffiffiffiffiffiffi
γs
2π

r
s†kas

�
þ H:c:; ð1Þ

where aj is the system operator that couples to the signal or
pump (j ¼ s=p) bath.
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We consider the cavity QED model depicted in Fig. 1(b)
as the system S, which we have designed to deterministically
convert single pump photons into signal photon pairs.
It consists of a four-level system with states fjgi;
jm1i; jm2i; jeig, coupled to two photonic modes in inde-
pendent cavities and a classical field. The pump mode, with
annihilation operator ap, is resonant with the jgi ↔ jei
transition. The signal mode, on the other hand, has annihi-
lation operator as and is resonant both with jgi ↔ jm1i and
jm2i ↔ jei. Finally, the classical field controls resonantly
the transition jm1i ↔ jm2i with a Rabi frequency Ωs, that
will allow us to tune between different regimes of emission
and, specifically, to induce deterministic down-conversion.
In a picture rotating at the pump frequency, the system is
then described by the Hamiltonian

HS ¼ gpa
†
pjgihej þΩsjm2ihm1j

þ gsa
†
sðjm2ihej þ jgihm1jÞ þ H:c: ð2Þ

The scattering formalism [33] is naturally suited for
analyzing processes such as the conversion of a given input
state jk1;…; kmip ¼ p†

k1
…p†

km
j0i with m incoming pump

photons with momenta fk1;…; kmg, into an outgoing
state jq1;…; qnis ¼ s†q1…s†qn j0iwith n signal photons with
momenta fq1;…; qng. All the asymptotic information
is contained in the so-called S matrix, defined as
S ¼ lim

tf→þ∞
ti→−∞ eiHBtfe−iHðtf−tiÞe−iHBti .

Let us study first the behavior of the system when excited
by a single pump photon of momentum ki, i.e., jkiip.
In order for the photon to be perfectly down-converted
to a signal photon pair, the condition phkfjSjkiip ¼ 0∀ kf
must be satisfied, that is, no photons are reflected in the
pump bath. We show analytically in the Supplemental
Material [34] that this condition can be satisfied under

resonant excitation ki ¼ 0 for a specific control drive
Ωs ¼ Ω2ph which reads

Ω2
2ph ≈ γ2s ½Γsð0Þ − Γp�=4Γp; ð3Þ

where we defined the Purcell-enhanced decay rates
through the pump or signal cavities, Γp ¼ 4g2p=γp and
ΓsðΩsÞ ¼ 4g2sγs=ðγ2s þ 4Ω2

sÞ, respectively, that we obtain
by adiabatically eliminating the cavity modes and the
intermediate levels [34]. Interestingly, Ω2ph corresponds
to the driving amplitude which makes these rates equal,
i.e., ΓsðΩ2phÞ ¼ Γp. This is a similar interference effect as
the one used in previous works [38–43], which we exploit
here to engineer perfect down-conversion even within
the bad-cavity limit gj ≪ γj (j ¼ p, s). Note that Eq. (3)
requires Γp < Γsð0Þ ¼ 4g2s=γs. Moreover, using scattering
theory, we can show [34] that the reflection coefficient
j R dkphkjSjkiipj2 has a Lorentzian shape as a function of
the incident momentum ki, with a width ∼Γp þ ΓsðΩsÞ,
which provides the bandwidth for efficient down-
conversion of single-photon pulses.
To further characterize the down-conversion process, we

calculate the outgoing two-photon wave function of the
signal field, defined as Ψ2phðx1; x2Þ ¼ h0jsðx1Þsðx2ÞSjkiip,
with sðxÞ ¼ ð2πÞ−1=2 R dkskeikx annihilating signal excita-
tions in real space. We provide its complete expression in
[34], and here reproduce an approximate one in the bad-
cavity limit and at resonance ki ¼ 0, which reads

jΨ2phðx1; x2Þj2 ∝
����e−γsτ −

γs sinðΩsτÞ
2Ωs

e−ΓsðΩsÞτ=2
����
2

; ð4Þ

where τ ¼ jx1 − x2j. This expression shows that the wave
function is indeed bunched, and therefore, the two output
signal photons propagate together. Moreover, it is non-
separable, that is, the photons within the pair share
entanglement. As shown in detail in [34], and following
a similar route to that used in optical parametric down-
conversion [44], we characterize this entanglement through
the Schmidt number, which allows us to perform efficient
analytical calculations by assuming the input wave packet
to have a Lorentzian spectral shape. We provide quantita-
tive details in [34], and here we just want to summarize our
main numerical findings: (i) the entanglement shows a
linear divergence with the inverse of the spectral width of
the input wave packet, and (ii) for most of the parameters,
the outgoing photons show strong nontrivial quantum
correlations, becoming nonentangled only for Ωs ¼ 0
and a specific width of the input wave packet. Note that
this entanglement is different from the one of parametric
sources such as those in [45], which are well described by
Gaussian correlations between continuous variables.
An alternative scenario is that in which the system is

continuously driven by a monochromatic laser at some

Non-linear systemPump Signal(a)

(b)

S

〉

〉e

g

FIG. 1. Scheme for photon-pair generation. (a) The nonlinear
system is driven through the pump bath (red) and the emission of
photons coming out through the signal bath (blue) is analyzed.
We depict the three relevant time scales that characterize the
emission in our system: the intrinsic time scale of the single-
photon wave packets (τB), and the separation between the pairs
(τA) and between the photons within the same pair (τin). (b) Non-
linear system that provides the interface between incoming and
outgoing photons.
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frequency ki through the pump bath (in the picture rotating
with kp). A standard approach in this context consists of
integrating the bath degrees of freedom, which results in a
master equation for the system’s state ρ [46,47]:

_ρ ¼ −i½HS þHD; ρ� þ
X

j¼s;p

γj
2
ð2ajρa†j − a†jajρ − ρa†jajÞ;

ð5Þ

where HD ¼ Ωpðe−ikita†p þ H:c:Þ is a driving term, being
Ωp its amplitude (taken real and positive without loss of
generality). The statistics of the field emitted through the
baths can be analyzed through multitime correlation
functions which, using input-output theory [46,47],

can be related to system correlators GðnÞ
j ðτ1;…; τnÞ ¼

ha†jðτ1Þ…a†jðτnÞajðτnÞ…ajðτ1Þi, where τ1 < … < τn with
the operators defined in the Heisenberg picture and j ¼ s,
p. The master equation allows evaluating these functions
via the quantum regression theorem [46,47].
Even though scattering and master equation formalisms

seem to apply to very different scenarios, they are very
much connected [32,48,49]. For example, let us consider a
situation in which H connects pump photons with signal
photon pairs, which is the case of our system. Using the
various definitions provided above, we find [34] a relation
between scattering amplitudes and correlation functions
of such a system under weak driving. In the case of the
second-order correlation function, to first nontrivial order
in Ωp we get [34]

Gð2Þ
s ðτÞ ¼ lim

t→∞
Gð2Þ

s ðt; tþ τÞ ∝ Ω2
pjΨ2phðx1; x2Þj2: ð6Þ

We find a similar connection between the photon-pair
second-order correlation function [25] and the four-photon
wave function Ψ4phðx1; x2; x3; x4Þ ¼ h0jsðx1Þsðx2Þsðx3Þs
ðx4ÞSjki; kiip. This reads [34]

Gð2Þ
s;2ðτÞ ¼ lim

t→∞
Gð4Þ

s ðt; t; tþ τ; tþ τÞ
∝ Ω4

pjΨ4phðx1; x1; x2; x2Þj2: ð7Þ

Within the scattering formalism, it is clear that the
system will be an ideal single photon-pair source whenever
jΨ2phðx1; x2Þj has an absolute maximum around x1 ¼ x2,
while jΨ4phðx1; x1; x2; x2Þj shows a wide dip at that point,
meaning that the system scatters photons in well-spaced
wave packets containing two signal photons. Therefore,
the equivalences above naturally give rise to a physical
criterion characterizing when the weakly driven system

is emitting light in photon pairs: Gð2Þ
s ð0Þ > Gð2Þ

s ðτÞ, while
keeping Gð2Þ

s;2ð0Þ < Gð2Þ
s;2ðτÞ, that is, it has to show bunching

of single photons, but antibunching between photon pairs.
Moreover, the antibunching time scale must be larger than
the bunching one, so that the separation between the pairs is
guaranteed. This connection provides, then, formal grounds
to the use in weakly driven systems of the photon-pair
second-order correlation function [25].
Let us now analyze the behavior of our system under

resonant continuous weak driving. In Fig. 2(a) we show the
dependence of the main steady-state observables on the
control drive Ωs, as obtained from the master equation (5)
or its connection with scattering theory [34], and using
representative parameters within the bad-cavity limit. We
represent various populations nj (j ¼ p for pump, s for
signal, and e for excited state), including the one for the
output pump mode ap;out ¼ 2Ωp=γp − iap, as well as

normalized correlation functions gð2Þj ðτÞ ¼ Gð2Þ
j ðτÞ=n2j

and gð2Þs;2ðτÞ ¼ Gð2Þ
s;2ðτÞ=½Gð2Þ

s ð0Þ�2 at τ ¼ 0. We can differ-
entiate three regimes of emission, best identified through
the second-order correlation function of the pump.

(i) gð2Þp ð0Þ ¼ 1, green background: This region shows a

transition from gð2Þs ð0Þ < 1, where the signal cavity is,

therefore, emitting single photons, to gð2Þs ð0Þ > 1, which

FIG. 2. (a) Main steady-state observables as a function of the control drive Ωs. Parameters are γp ¼ 20γs, Ωp ¼ 0.01γs,

gp ¼ gs ¼ 0.1γs. (b) and (c) show, respectively, Gð2Þ
s ðτÞ (or equivalently two-photon wave function) normalized to its maximal value

and gð2Þs;2ðτÞ (or equivalently four-photon wave function) as a function of τ for Ωs changing logarithmically from 0.001γs to 100γs (in
color) and for the optimal conditionΩ2ph (dashed black) defined in Eq. (3). Notice that in (c) the curves from Ωs ¼ 10−3 to 0.1 and 10 to
100 overlap. We do not show the purity of two-photon emission [25] in the plots because, due to the way the system is engineered, it is
100% for all parameters.
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corresponds to correlated emission from the cascade
through the intermediate levels. However, when looking

at the dynamics of Gð2Þ
s ðτÞ in Fig. 2(b), we can see how the

maximum two-photon probability occurs at τ > 0, and
therefore it is still not a good photon-pair source, since this
indicates that the photons inside the pair are spatially

separated. (ii) gð2Þp ð0Þ < 1, blue background: This region

shows gð2Þs;2ð0Þ < gð2Þs;2ðτÞ as shown in Fig. 2(c), maximal

Gð2Þ
s ðτÞ very close to τ ¼ 0, and a bunching time scale

much shorter than the antibunching one of gð2Þs;2ðτÞ.
Therefore, photons inside a pair are emitted together and
the pairs are well separated, so the system behaves as a
good photon-pair source according to the criterion defined
above. Moreover, this region features a maximal signal
population ns (and minimal np;out) at the optimum control
drive Ω2ph, yielding then a maximum photon-pair emission

rate given by γsns. (iii) g
ð2Þ
p ð0Þ > 1, red background: With

photon-pair emission but with a decrease of its rate.
In order to gain an understanding of the two-photon

emission process, we analyze the relevant time scales for
the emission of photon pairs, which are schematically
depicted in Fig. 1(a), and we define in what follows. Once
the system arrives at jei it relaxes to jgi in a time τA (acting
then as the reloading time), either emitting a pump photon
or two cascaded signal photons separated by a time τin.
Denoting by τB the intrinsic width of the single-photon
wave packets, it is then clear that τin < τB < τA is required
for the system to act as an antibunched two-photon source.
We have made a detailed analysis of these time scales [34],
and here we focus on the results found within the bad-
cavity limit (gj ≪ γj) and with a strong-enough control
drive (Ωs ≫ g2j=γj). In this regime, it is shown that τin
scales as Ω−1

s , and hence the delay between photons within
the same pair can be made arbitrarily small by increasing
the control drive. Under such circumstances, we get
τB ∼ γ−1s , which determines the time scale of the bunching

in Gð2Þ
s ðτÞ, and provides the requirement Ωs > γs. Finally,

τA is determined by the decay rate from jei to jgi through
the p and s channels, leading to τ−1A ≈ Γp þ ΓsðΩsÞ. The
different dependence of the scaling of these time scales
with Ωs explains the transition between the different
regimes in Fig. 2.
To further estimate the feasibility of our proposal, we

now analyze the effect of having spontaneous emission
from jei to jgi through other dissipative channels.
Assuming such processes to occur at the rate γ� ≪ γp;s,
this time scale contributes to the reloading time as τ−1A ≈
ΓsðΩsÞ þ Γp þ γ� [34]. It is then clear that as long as
γ� ≪ γs, the condition τA ≪ fτB; τing will then still be
satisfied. Such an intuitive result is confirmed numerically
[34], where we see that, as expected, by increasing γ� above
γs the system shows a transition from antibunched to
bunched photon pairs, as τA becomes comparable to τB.

One versatile platform to implement our ideas is circuit
QED [50–52], where we can use long-lived qubits, single-
mode cavities, and open transmission lines to design our
proposed setup. For concreteness, a specific architecture
is depicted in Fig. 3(a), although it is important to note
that any other architecture containing the ingredients and
couplings that we introduce would work as well, as our
ideas do not rely on the details of the implementation. Two
identical qubits (transmons [53,54] in the figure, details can
be found in [34]) with energies ωt are capacitively coupled

through an xx interaction ωtκσ
ð1Þ
x σð2Þx =2, whose spectrum

is shown in Fig. 3(b). The desired four level structure
appears between the states jm2;1i ∝ j↑↓i � j↓↑i and
je; gi ∝ ðκ−1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ−2
p

Þj↑↑i þ j↓↓i, with respective
energies E2;1 ¼ �ωtκ and Ee;g ¼ �ωt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
. Here, j↓i

and j↑i are the ground and excited qubit states. Two single-
mode LC resonators with frequencies ωp ¼ Ee − Eg and
ωs ¼ Ee − E2 ¼ E1 − Eg provide the pump and signal
modes, respectively, while an additional strongly driven
resonator with frequency ωL ¼ E2 − E1 is used to control
the intermediate transition. The pump and classical cavities
are inductively coupled each to one transmon via xz

interactions, g2pðap þ a†pÞσð2Þz and g1LðaL þ a†LÞσð1Þz .
Finally, the signal cavity is capacitively coupled through

an xx interaction to one of the transmons, g1sðas þ a†sÞσð1Þx .
Working in the κ ≪ 2 regime and provided
fg1Lα; g2pκ; g1s=

ffiffiffi
2

p g ≪ 2ωtκ, these types of couplings
ensure that in the eigenbasis of the two-qubit system the
full system Hamiltonian takes the form of Eq. (2), with
Ωs ¼ g1Lα, gp ¼ −g2pκ, and gs ¼ g1s=

ffiffiffi
2

p
[34]—α being

the number of excitations in the classical cavity that
can be controlled via the external driving. Using γp;s on
the tens of MHz range, the spontaneous emission of the

0.0 1.0

–1.0

0.0

1.0

(a)

1

2x xx x z x

z
x

x x

x x

transmon
transmon

4-level system

Open transmision line Open transmision line

Pump cavity
Signal cavity

External drivingCavity for the 
intermediate
 transition

(b)

FIG. 3. (a) Circuit QED implementation: two coupled transmon
qubits provide the desired four-level structure (b), while three LC
circuits provide the single-mode cavities playing the role of
signal, pump, and the classical driving for the intermediate
transition. The baths are implementedwith open transmission lines.
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superconducting qubits gets orders of magnitude below
such large cavity decay rates, while the cooperativities
Cj ¼ 4g2j=γjγ

� (j ¼ p, s) can be made very large since
couplings g2p and g1s up to tens of MHz are routinely
achieved in current experiments. With these parameters,
at the optimal point Ωs ¼ Ω2ph, the rate of photon-pair
emission γsns can get up to the 0.1–10 kHz range
for Ωp=γs ∈ ½10−2; 10−1�.
Other platforms may fulfill our requisites in the optical

domain, such as natural or artificial atoms using its
“butterflylike" level structure, coupled to nanophotonic
cavities. Current experiments with atoms [55] show coop-
erativities around 10, with decay rates up to 25 GHz,
which would lead to photon-pair emission rates in the
0.1–10 MHz range, which already exceed current para-
metric down-conversion technologies.
Summing up, we have designed a cavity QED setup that

acts as a deterministic down-converter when excited by
single photons or as a continuous entangled photon-pair
source when weakly driven, and does so within the bad-
cavity limit. From the connection between the two regimes,
we also formalized a criterion characterizing photon-pair
sources under weak driving, based on the dynamics of the
standard correlation function gð2ÞðτÞ and the generalized

one of the pairs, gð2Þ2 ðτÞ, first introduced in [25]. Our
analysis of the figures of merit and scaling with different
parameters has shown the feasibility of the proposal, for
which we have designed a concrete implementation based
on superconducting circuits. We believe that our charac-
terization, analysis, and implementation proposal represent
an important step forward in the fabrication of efficient
two-photon sources. We also foresee its extension to
N-photon states, and, as a first step, we show in [34] how
to obtain deterministic conversion of single photons into
N photons, by usingmore elaborate schemes with 2N levels.
We will analyze such setups in depth in future works.
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Note added.—Recently, a preprint appeared proposing an
alternative route to deterministic down-conversion [43].
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