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Atom interferometers provide exquisite measurements of the properties of noninertial frames. While
atomic interactions are typically detrimental to good sensing, efforts to harness entanglement to improve
sensitivity remain tantalizing. Here we explore the role of interactions in an analogy between atomic
gyroscopes and SQUIDs, motivated by recent experiments realizing ring-shaped traps for ultracold atoms.
We explore the one-dimensional limit of these ring systems with a moving weak barrier, such as that
provided by a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy
with the superconducting phase-slip qubit, in which the topological charge associated with persistent
currents can be put into superposition. In particular, we find that strongly interacting atoms in such a system
could be used for precision rotation sensing. We compare the performance of this new sensor to an
equivalent noninteracting atom interferometer, and find improvements in sensitivity and bandwidth beyond
the atomic shot-noise limit.
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Cold atomic systems have provided an exciting arena
for studying aspects of quantum mechanics. The ability to
coherently manipulate atoms has been employed to mea-
sure the properties of noninertial frames, e.g., Refs. [1,2].
The recent realizations of toroidal traps [3–9] for atoms
have presented the possibility for an atomic analogue of the
SQUID and its application as a sensor and qubit, e.g.,
Refs. [10–15]. These systems are well understood when
interactions between particles are comparatively weak.
However, to achieve the maximum advantages in sensing
and other applications, many-body superpositions must be
understood and utilized. In this Letter, we propose a
method for the reliable creation and manipulation of
superpositions of many-body states of cold atoms, in
particular, the persistent current states of atoms confined
to a 1D ring. As a concrete example, we show how the
system sensitivity to rotation can be improved by strong
interactions.
Previous approaches to atom interferometric sensing

use the ability to transform phase evolution along different
paths into population differences, but treat atomic inter-
actions as deleterious to sensitivity [16,17]. In these
approaches, e.g., Ramsey interferometry, single atoms are
put into superposition and the relative phase gained over
some time contains information about the quantity to be
measured. The far end of the interferometer converts these
phases into measurable population differences. However,
atoms can interact during this process, altering the phase
and leading to a loss of single atom coherence, decreasing
the final sensitivity of the measurement [16,17]. These
experiments can be engineered to minimize the possibility

of interaction and they have produced remarkably precise
measurements of gravitation and rotation [1,2]. This
precision comes in part from conducting a large number
of independent single atom measurements simultaneously.
These ensemble measurements have a noise-signal ratio
limited by the shot noise of N independent two-level
systems. This noise-signal ratio goes as 1=

ffiffiffiffi
N

p
, known

as the shot noise limit [18]. Sensitivities may be improved
even to the limit from Heisenberg uncertainty, but only
through atomic entanglement, such as squeezing [19].
This Letter describes a system designed to explore the

effect of atomic interactions on the sensitivity of an atomic
interferometer to rotational flux. We investigate whether
there are situations in which atomic interactions can lead to
the correlations necessary to beat the shot noise limit while
not being too strongly dephased to prevent sensitivity
improvements. We find that a strongly repulsive gas of
atoms with a weak barrier can be manipulated to create
persistent current state superpositions, which can be used to
sense rotation with sensitivity that scales as N−3=4, below
the shot noise limit, but not approaching the Heisenberg
limit. Surprisingly, we do not find that SQUID-like systems
with strong barriers are effective for this sensing technique.
Instead, we utilize the atomic analogue of the phase-slip
qubit [20].
Strongly interacting systems are famously challenging

to analyze. To reduce the difficulty of this problem, we
study only the long wavelength behavior of a gas of atoms
trapped in a ring geometry in the 1D limit. This dimen-
sional reduction simplifies the physics involved and allows
us to consider a variety of interactions and even statistics,
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though we focus on the bosonic case. While current
experiments are weakly interacting and, at best, quasi-2D
[5–9], 1D linear traps have been achieved with a range of
interaction strengths, e.g., Refs. [21,22]. There remains
substantial work to create strongly interacting ring systems
described above and by others [23–27], but there are efforts
in progress [28] and this Letter demonstrates an additional
payoff of achieving such systems.
Since we consider a wide range of atomic interactions,

perturbative methods are not suitable. Mean-field approx-
imations, such as those underlying the Gross-Pitaevskii
equation, miss a crucial quantum effect: the ability to create
superpositions of many-body excitations, which we find to
be necessary for interaction-assisted metrological benefit.
Instead, we employ Luttinger liquid theory, an effective
field theory which universally describes quantum systems
in one dimension with short-range interactions [29–31].
We require temperatures and time variations that are slow

compared to the Luttinger energy scale, ELL≈ ðℏ2π2ρ20=KÞ,
where ρ0 ¼ hρi is the average number of atoms per length.
K, the Luttinger parameter, encodes the combined effects
of statistics and interactions. For example, K ¼ 1 corre-
sponds to the Tonks-Girardeau gas (or free fermions) and
K → ∞ is the superfluid limit. The interaction strength of
delta function-interacting bosons can be mapped to the
Luttinger parameter, which allows us to consider the range
of interactions for a repulsive Bose gas [31]. We find that
K ≈ 1 is ideal for the gyroscope. In this limit, we can
express the Luttinger parameter in terms of the 3D
scattering length, as, the transverse confinement, l⊥, and
ρ0: K¼1þf2ρ0l2⊥½1−ðCas=l⊥Þ�=asg, where C≈1.0325…
is a constant [31]. This theory has the following free
Hamiltonian (following conventions from Ref. [31]):

H0 ¼
ℏvs
2π

Z
L

0

dx

�
K½∂xϕðxÞ�2 þ

1

K
½∂xΘðxÞ − πρ0�2

�
;

ð1Þ
where vs is the speed of sound, L is the circumference
of the ring, ϕðxÞ is a local phase of the underlying field
which we are abstracting away. ∂xΘðxÞ relates to the
number density, ρ, by ρðxÞ ¼ ½∂xΘðxÞ=π�

Pþ∞
l¼−∞ e2ilΘðxÞ.

The Luttinger fields ϕðxÞ and ΘðxÞ have the following
commutation relation, ½ϕðxÞ; ∂x0Θðx0Þ=π� ¼ iδðx − x0Þ.
To make the system sensitive to rotation, we break

rotational symmetry by adding a blue-detuned laser beam
as a localized potential barrier, shown in Fig. 1. We
approximate the laser in the long wavelength theory as a
(moving) barrier at a single point (x ¼ xbðtÞ) on the ring.
When the barrier is smaller than ELL, i.e., weak, it induces a
new term in the Hamiltonian [30–33]:

V ¼
Z

L

0

dxU0δ(x − xbðtÞ)ρðxÞ

≈ 2NU0 cosf2Θ(xbðtÞ)g; ð2Þ

where N is the particle number, and U0 is the dipole
potential from the laser. In this expansion, we have
kept the lowest harmonics of the density (consistent with
Refs. [30,32,33]). Though strong laser barriers have been
used to create “weak links,” in one dimension such barriers
will destroy persistent current states. The weak barrier
considered here preserves the character of persistent current
states and couples them perturbatively.
We perform a standard field expansion for periodic

boundary conditions [31,34]. This expansion defines the
fields in terms of zero modes (θ0;ϕ0), topological excita-
tions (N, J), and phonons (bq). Explicitly,

ΘðxÞ ¼ θ0 þ
πx
L

N þ 1

2

X
q≠0

���� 2πKqL
����
1
2ðeiqxbq þ e−iqxb†qÞ; ð3Þ

ϕðxÞ¼ϕ0þ
2πx
L

Jþ1

2

X
q≠0

���� 2π

qLK

����
1
2

sgnðqÞðeiqxbqþe−iqxb†qÞ:

ð4Þ
In this expansion,

H0 ¼
X
q≠0

ℏωðqÞb†qbq þ
ρ0Lℏω0

8K2
ðN − ρ0LÞ2 þ

ρ0Lℏω0

2
J2;

ð5Þ
where ω0 ¼ ð4π2ℏ=ML2Þ is the rotation quantum for par-
ticles of mass M in a ring of circumference L and we use
the relation vsK ¼ ðℏπN=MLÞ from Galilean invariance to
achieve this form. We restrict our consideration to a fixed
atom number (N ¼ ρ0L). The current operator J has integer
eigenvalues and represents the topological charge associated
with persistent current in the ring. The phononmodes,bq, are
bosons with quasimomentum qn ¼ ð2πn=LÞ for n ∈ Z and
ωðqÞ ¼ ℏvsjqj for q ≪ ρ0.
Now, we transform to a frame which is corotating

with the barrier. The barrier rotates along with the lab
frame and can be actively controlled relative to the
lab frame to “stir” the gas. Noting ½J; 2θ0� ¼ i and
½bq; b†q0 � ¼ δqq0 , we transform the Hamiltonian with

Urf ¼ exp ½−iðf½2πxbðtÞN�=LgJ þP
q≠0qxbðtÞb†qbqÞ�.

FIG. 1. A cartoon of the system. Atoms are trapped in a 1D ring
of length L with a blue-detuned laser crossing at a single
point, xbðtÞ. In the atom frame, the barrier rotates through
the ring at a rate combining the laboratory frame rotation
[ωframe ¼ ð2πvframe=LÞ] and the externally controlled stirring
rate [ωstir ¼ ð2πvstir=LÞ].
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The free Hamiltonian is invariant under the transforma-
tion, while V → 2NU0 cos½2Θð0Þ�. We also gain the terms

δH ¼ −iℏU†
rf
_Urf ¼ −ℏωbðtÞNJ − ℏ

X
q≠0

q_xbðtÞb†qbq; ð6Þ

where ωbðtÞ ¼ ½2π _xbðtÞ=L� is the angular frequency of the
barrier relative to the atoms.
We complete the square for the linear J term and ignore

the constant term produced under our fixed atom number
assumption. Thus, the transformation leads to a shift in the
persistent current operator J2 → fJ − ½ωbðtÞ=ω0�g2. The
phonon term is easily absorbed by defining a new phonon
dispersion relation, ~ωðqÞ ¼ vsjqj − _xbðtÞq. This shifted
frequency confirms the intuition that if the stirring speed
_xb grows larger than the sound velocity vs our theory will
become unstable.
Adding in a barrier breaks the Galilean invariance, and

can couple phonons and topological excitations to them-
selves and each other, potentially decohering topological
charge superpositions. We can expand the barrier term
using Eq. (3),

V ¼ NU0ðe2i½θ0þδθð0Þ� þ e−2i½θ0þδθð0Þ�Þ; ð7Þ

where δθð0Þ ¼ 1
2

P
q≠0j2πK=qLj1=2ðbq þ b†qÞ is the pho-

non contribution to the field.
We focus on the coupling of topological charge states,

which are most suited for sensing applications. Thus, we
integrate over the phonon modes to determine the effective
interaction between the persistent current states. Following
Refs. [32–34], we arrive at the following expression for the
potential barrier.

V ¼ NU0e2iθ0he2iδθð0Þiδθ þ H:c:

¼ 2NUeff cosð2θ0Þ; ð8Þ

where the brackets denote functional integration over the
phonon modes, Ueff ¼ U0ðd=LÞK is the renormalized
barrier strength, and d is a short distance cutoff. While
Luttinger liquid theory has a cutoff above which it loses
validity [ELL ≈ ðN2ℏω0=4KÞ], this renormalization step
gives a lower cutoff, Eph ¼ ðNℏω0=4KÞ ≈ ðELL=NÞ. The
new cutoff generates a time scale below which the
renormalized theory is not valid, which will be important
to consider when manipulating the system. Simply put,
working below the lowest phonon mode frequency prevents
decoherence but lowers the “max velocity” for diabatic
processes.
The barrier renormalization depends on both the micro-

scopic details and the Luttinger parameter, K. Here we see
the first nontrivial indication of the interactions: in the
superfluid limit (K → ∞), a barrier will be weakened
significantly by the phononic modes. However, in the

strongly repulsive (K → 1) regime, the barrier will remain
finite, allowing mixing between current states. The relevant
cutoff for this regime is d ≈ ðKL=NÞ, soUeff ¼ U0ðK=NÞK
[34]. In this limit, the strongest constraint on the barrier
is that it must be weak, 2NU0 < ðN2ℏω0=4KÞ. This
restriction guarantees that the perturbative and adiabatic
constraints will be satisfied, since after renormalization
2NUeff¼2N1−KU0KK<ðN2−Kℏω0=4K1−KÞ<Eph. Fixing
the weakness of the barrier sets U0 ¼ UweakN, where
Uweak < ðℏω0=8KÞ.
This Hamiltonian, similar to the quantum phase-slip

junction [20], is the dual of the standard superconducting
charge qubit Hamiltonian [35]:

HJJ ¼ Ecðn − ngÞ2 − EJ cosðδÞ; ð9Þ

where n is the number of Cooper pairs on the island, ng is
set by the gate voltage, δ is the phase difference across
the junction, and ½δ; n� ¼ i. Under the substitution n → J
and δ → −2θ0, the current states form a charge-qubit-like
system with EC ¼ ðNℏω0=2Þ and EJ ¼ 2N1−KU0KK

(EJ ≪ EC, since the barrier is perturbative).
Since the barrier couples the current state jJi to

states jJ0i ¼ jJ � 1i, superpositions can be formed by
precisely controlling the rotation rate of the stirring beam.
Consider preparing the atoms without any rotation,
jΨi ¼ j0i. Here, only the states j � 1i will be coupled
by the barrier and only mix weakly into the ground state at
ω ¼ 0. We can implement a π=2 pulse in the two steps
illustrated in Fig. 2(a). First, we adiabatically increase
rotation to ω ¼ ðω0=2Þ, where the instantaneous ground
state is ð1= ffiffiffi

2
p Þðj0i − j1iÞ. Then, the rotation rate is

diabatically ramped back to ω ¼ 0 and the barrier
turned off. This process will be completed in a time
τπ=2¼τadiabaticþτdiabatic. These times can be determined
from a Landau-Zener analysis of the effective two-level
system and will be set by the effective barrier height,
τπ=2 ∝ ðℏ=NUeffÞ.

FIG. 2. (a) The energy spectrum for the perturbed current states,
lower (upper) represents the ground (excited) state. The weak
barrier creates avoided crossings at rotation ω ¼ ðnþ 1=2Þω0,
n ∈ Z. The arrows represent the proposed “π=2 pulse”: the
system is adiabatically driven to the avoided crossing (single
arrow) and diabatically returned ω ¼ 0 (double arrow). (b) A
cartoon of the proposed Ramsey sequence. The sequence consists
of two π=2 pulses with an observation time τobs in between.
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Having established the charge-qubit-like behavior and
appropriate sequences for preparing topological charge
superpositions, we now propose a Ramsey interferometry
scheme for rotation sensing, using the persistent current
states as the basis. As described above, we create a
superposition of current states, ð1= ffiffiffi

2
p Þðj0i − j1iÞ, and

turn the barrier off. Then, we expose this superposition
to a small rotation rate (ω ≪ ω0) for a time τobs
without the barrier. Over this time, the superposition
will evolve into the state ð1= ffiffiffi

2
p Þðj0i−eiϕj1iÞ, where

ϕ ¼ Nτobs½ðω0=2Þ − ωÞ�. This phase can be converted
into a population difference by performing another π=2
pulse. A cartoon of the process is pictured in Fig. 2(b).
The final state can be read-out from the persistence of a
vortex core in time-of-flight imaging. If the state projects
to j1i, the vortex will be visible as an absence
of density in the center of the ring, while j0i will expand
isotropically, filling the central core [6]. As the relative
phase between many-body excitations, the phase scales
with the number of atoms while the vortex shot noise is
constant. Therefore, the nominal sensitivity to rotation has
Heisenberg-like scaling in the absence of noise.
The proposed gyroscope is most viable in the strongly

interacting limit which maintains the gap needed to couple
persistent current states and keeps τπ=2 short. While our
analysis has only considered a clean system, it is likely that
there will be disorder present in the trap. Disorder leads to
localization in one dimension for K < 1.5 [30]. Therefore,
the optimal K is just above this localization limit. While
this limit is acceptable for simple experiments, a more
detailed analysis of trap imperfections will be necessary for
improving future experiments.
We consider realistic sources of noise that could affect

the sensitivity. In particular, we will consider shot-to-shot
variation in the atom number. Other systematic noise
issues, such as laser power and trap configuration fluctua-
tions, could be problematic but can be surmounted with
sufficient detuning and laser power.
To compute the effect of shot-to-shot variations in atom

number, we assume that number fluctuations are
Poissonian, σN ¼ ffiffiffiffi

N
p

. We can consider each individual
run of the experiment as having some fixed signal and a
random additional noise. We define F ¼ ðω0=2Þ − ω and
δNi as the noise in the atom number. We consider an
average of many measurements over the noise:

heiϕi ¼ heiðNFτobsþδNiFτobsÞi
≈ eiNFτobse−F

2σ2Nτ
2
obs : ð10Þ

While in the absence of noise, longer evolution times
would produce higher sensitivity, the low frequency noise
decreases contrast as e−F

2σ2Nτ
2
obs as τobs increases. With this

noise added in, we can calculate the sensitivity of our
approach:

S ¼
����∂ω

Signal
Noise

����
−1
����
ω¼0

ffiffiffiffiffiffiffi
τobs

p

¼
����Nω0τobs sinðNF0τobs þ ϕ0Þe−F2

0
σ2Nτ

2
obs

2F0

����
−1 ffiffiffiffiffiffiffi

τobs
p

¼ eðω2
0
=4Þσ2Nτ2obs

N
ffiffiffiffiffiffiffi
τobs

p ; ð11Þ

where in the last line, we have used
F0 ¼ Fðω ¼ 0Þ ¼ ðω0=2Þ. We can optimize τobs and
determine the best sensitivity for the device. Using the
optimum observation time, τ�obs¼ð1=ω0σNÞ, we calcu-
late, Smax¼ðe1=4 ffiffiffiffiffiffiffiffiffiffiffi

ω0σN
p

=NÞ.
We see that a Poisson-distributed number of atoms per

“shot” changes the ideal Heisenberg-like scaling for N
fixed to N−3=4 scaling. However, this is still an improve-
ment over the shot-noise limit. It could be further enhanced
if the time-of-flight images from vortex detection are
calibrated to give a sub-Poissonian estimate of atom
number, effectively reducing σN .
Using a gas temperature of 100 nK and ring radius

R ¼ 19.2 μm [5–7], we assume a transverse confinement
of l⊥ ≈ 200 nm, which gives as ≈ 3600a0, where a0 is the
Bohr radius, to set K ≈ 1.6 for N ¼ 105. Estimating
σN ¼ ð ffiffiffiffi

N
p

=10Þ, we find that a sensor with N ¼ 105 atoms
would have τπ=2 ¼ 0.8 s, τ�obs ≈ 4 ms, a sensitivity of
2 × 10−4ðrad=s ffiffiffiffiffiffi

Hz
p Þ and a bandwidth ≥ 200 Hz. Since

the entanglement allows relatively rapid phase accumula-
tion, the sensor has a higher bandwidth than noninteracting
sensors. To reasonably compare these techniques, we
instead consider a sensitivity per root bandwidth.
We plot the numerical results for optimum sensitivity as a

function of atom number N and compare with the noiseless
limit and an equal area atom interferometer as described in
Ref. [1], each evaluated for a fixed time τcomp ¼ ð2π=ω0Þ ¼
0.838 s in Fig. 3. This time is set by the circumnavigation
time for atomsmoving at the persistent current velocity and is
much longer than optimal observation for the Luttinger
system, τcomp ≈ 6 × maxðτ�obsÞ. In the atom interferometer,
the atoms will gain a Sagnac phase of ϕ ¼ ð2M=ℏÞωA,

FIG. 3. (a) The sensitivity of our proposed gyroscope (solid)
plotted on a log-log scale as a function of atom number. The
dashed (dotted) line represents the sensitivity for a noiseless
Luttinger (atom interferometer) system with an observation time
of τcomp ¼ 0.838 s. (b) Solid (dashed) lines: The single-shot
sensitivity for the noisy Luttinger (atom interferometer) system
for different observation times, τ, as a function of atom number.
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where A ¼ ðL2=4πÞ is the area enclosed by the atoms. This
phase can be conveniently rewritten, ϕ ¼ ð2πMR2=ℏÞω ¼
ωτcomp. The sensitivity for the comparison noninteracting
system will be

SSA ¼ 1

j∂ω½12 cosðωτcomp þ ϕ0Þ�j

ffiffiffiffiffiffiffiffiffiffi
τcomp
N

r
;

SSAmax
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nτcomp
p : ð12Þ

The sensitivity is improved in the Luttinger ring system,
Fig. 3(a). The noninteracting atomic case shows scaling
∝ N−1=2 due to the shot-noise limit. Similarly, the noiseless
Luttinger system shows Heisenberg-like scaling (∝ N−1)
while the noisy case sits in between. The single shot
sensitivity, Fig. 3(b), demonstrates the trade-offs between
longer observation times and atom number.
We note that preparing the Luttinger system takes much

longer than the observation time. In our example case, τprep ≈
0.8 s for the ðπ=2Þ pulse; so too does τmeasure ≈ τprep, which
results in a long time between measurements. Faster prepa-
ration techniques would substantially improve performance.
In addition, atom interferometers can achieve sensitivities
much lower than those presented here by using many more
atoms and a large enclosed area as shown in Ref. [1].
While the system shows limited application for high

sensitivity rotational sensing, the size of the system makes
it a compelling candidate for inertial tests, such as inverse-
square law tests, where short length scales are difficult to
probe [36–38]. In particular, several high-energy theories
predict deviations from Newtonian gravity at the micron
scale [36,39–41]. The ring system described above shows
promise in detecting these deviations. However, designing
and optimizing such a test will require further research and
is beyond the scope of this Letter.
A detailed analysis of the limitations on coherent super-

positions in Luttinger liquids will be needed for a complete
understanding of this type of gyroscope. Though we
controlled the dominant dephasing mechanism by working
slowly enough to avoid creating phonons, it is not obvious
how stable the superposition will be if particle loss is
included. Simulations of superpositions of atoms (N < 10)
suggest that the strongly repulsive regime considered here
(K → 1) may be robust to particle loss but it is unclear if
these results extend to many atoms [25]. Still, the scheme
allows the creation of a many-body superposition with
sensitivity to small rotation rates and shows favorable
scaling, even in the presence of noise. In addition to
rotation or inertial sensing, it is possible that creating these
superpositions will have other interesting applications, e.g.,
for use as qubits [26,27,42].
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