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Under geometric constraints, a thin structure can respond to an external loading in an unexpected way.
A paper strip that is looped and pulled can be used for simple experimentation of such a process. Here, we
study this seemingly very simple phenomenon in detail by combing experiments and theory. We identify
the three types of shape transitions, i.e., crease, helicoid, and pop out, from a stretched loop, and classify
them in terms of parameters characterizing a ribbon geometry. We establish a transition-type diagram by
compiling our extensive experimental data. Numerical simulations based on the Kirchhoff rod theory and
scaling argument reveal that the pop-out transition is governed by a single characteristic length ξ ∼ b2=h,
where b and h are the ribbon’s width and thickness, respectively. We also reveal the key roles of other
physical effects such as the anisotropy of the bending elasticity and plastic deformations upon the shape
selection mechanisms of a constraint ribbon.
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A loop under tension arises across different length scales.
Examples include DNA filaments interacting with proteins
in cell environments [1,2], nanobelts [3], gift-wrapping
ribbons [4], knots in ties or shoelaces [5,6], wire clay or
cheese cutters, surgical wires for ligation, and submarine
cables [7]. The interplay between the geometry, topology,
and elasticity as well as other physical effects determines
the complex behaviors of such loops.
For a rod and wire, because the cross-sectional sizes are

much smaller than the arclength, a one-dimensional (1D)
description has been established and applied [8,9]. However,
a ribbon, which is 1D-like at its arclength scale, can be
viewed locally as two dimensional since its width and
thickness are largely different. Thus, a ribbon geometry is
often phrased as an intermediate between a rodlike (1D) and a
sheetlike (2D) object [10]. Choosing a dimensional descrip-
tion one should apply to describe a ribbon is a difficult issue,
and generally depends on a scale of description, boundary
conditions, and geometric constraints [11–13]. At a length
scale comparable to the ribbon’s largest extent, an effective
1D elastic model has been established by considering the
effects of in-plane stretch elasticity [14–18]. However, the
questions of when the dimensional crossover occurs and
how it influences the shape selection of a ribbon have still
not been satisfactorily answered.
Here, we propose an experimental setup that allows the

investigation of a ribbon’s effective dimension by control-
ling a single parameter δ defined in Figs. 1(a) and 1(b). As
the ribbon of width b and thickness h is pulled, different
shape transitions, i.e., crease, helicoid, or pop out, from a
tightened loop are observed depending on subtle control of
the transverse distance δ. By performing systematic physi-
cal experiments, we classify the three types of transitions in
terms of the parameters characterizing the ribbon geometry.

Emphasis is then given to the pop-out elastic instability. To
rationalize the observed behavior, we employ numerical
and analytical approaches based on the Kirchhoff’s elastic
rod theory, and demonstrate the pivotal role of the char-
acteristic length ξ ∼ b2=h.
Recent studies have shown that elastic helical ribbons

can display stretching instabilities [19–22]. These studies
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FIG. 1. (a),(b) Configuration of a looped ribbon and definition
of the basic parameters, i.e., ribbon’s width b, end-to-end
distance u, gap distance between the centerline of the ribbon’s
ends δ, and height of ribbon’s top H. (c),(d) Sequence of
snapshots of a paper ribbon during the stretching process in
experiments. (c) crease: ðL;b;δÞ¼ ð212;10;30Þmm; (d) pop out:
ðL; b; δÞ ¼ ð212; 10; 35Þ mm.
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distinctly differ from ours in two respects. First, our ribbon
is intrinsically flat and does not possess any intrinsic
curvatures. Second, neither end of our ribbon rotates about
its axis (i.e., the linking number is conserved to unity), but
helical ribbons in the previous studies were allowed to do
so; otherwise, continuous unlooping was unattainable. At
this point, we note an important contribution by Goss et al.
[23], who reported experimental investigations of both the
hockling and pop-out responses of a twisted rod under
tension at δ ¼ 0 in our notation. Here, we will show that the
δ dependence results in an entirely new physics in the
ribbon mechanics, thereby generalizing the previous stud-
ies for looped rods and elastica [7,22–25].
A flat ribbon was cut out from a filter paper (Wattman,

No. 1002-917, Wattman Co.) with a uniform thickness
h ¼ 0.19 mm. We carefully introduced a loop in the ribbon
by hand and clamped both ends to set the transverse gap δ
(see Fig. 1). We stretched the ribbon at a constant pulling
speed while keeping δ fixed, and recorded the subsequent
shape changes in a video. The morphologies of the ribbon
were then analyzed by capturing the images from those
videos. The geometric quantities characterizing a ribbon
configuration are the arclength L, width b, and δ, which we
varied in the range 112–262 mm, 1–12 mm, and 5–65 mm,
respectively, in the experiments. Hereafter, we represent
these as a triplet number (L, b, δ) in the unit of [mm]. The
stretching speed ranges from 2 to 20 mm=s, corresponding
to a quasistatic stretching where the overall shape dynamics
is insensitive to the speed (except in the very vicinity of the
transition points). A fresh paper ribbon was used for each
experiment.
Figures 1(c) and 1(d) show the behavior of the ribbon

during the stretching process for ðL; b; δÞ ¼ ð212; 10; 30Þ
and (212,10,35). As the ribbon is stretched, the loop gets
progressively smaller. When the loop becomes sufficiently
small, a further stretching triggers two qualitatively differ-
ent shape dynamics depending on δ. For small δ, the loop
creases to form a kink [Fig. 1(c)], and the ribbon tears off
before it is stretched out. The collapse of the loop is
characterized by plastic deformations at the singularity
region [26]. In contrast, when δ is larger, the tightened loop
suddenly opens, culminating in a helicoidal shape when it
is stretched out [Fig. 1(d)]. The ribbon seems to respond
almost elastically during this entire process.
For fixed L and b, we can find a critical gap distance

δCP ¼ δCPðL; bÞ, below which (δ < δCP) a ribbon creases,
and above which (δ > δCP) the ribbon “pops out.” The
transition is subtle; close to δCP, a ribbon’s behavior
depends strongly on experimental uncertainties. To sta-
tistically address this, we repeated ten independent experi-
ments for each δ, and the probability of the pop-out event
pðδÞ has been constructed [27]. We found that pðδÞ rapidly
increases as δ crosses δCP. The value of δCP was then
determined from the condition pðδCPÞ ∼ 0.5. Therefore, we
needed to perform several tens of experiments to determine

one point plotted in Fig. 2, which amounts to a few
thousand experiments in total to construct the whole
diagram. When δCP are plotted in the form of δCP=L vs
b=L, they compose a single master curve, defining the
boundary separating the crease (C) and pop out (P)
transition regimes [Fig. 2]. Further, a log-log plot of the
same data (inset in Fig. 2) suggests

δCP ∼ ðbLÞ1=2: ð1Þ

A precise physical interpretation of Eq. (1) will be a
theoretical challenge in future studies. Importantly, the
scaling relation in Eq. (1) may provide a simple and
practical guideline for the operation of ribbonlike structures
without causing any permanent damages.
Depending on (b, L, δ), unlooping occurs via either

discontinuous or continuous shape changes. The pop out is
apparently discontinuous. The ribbon’s top suddenly jumps
up so that the ribbon takes its characteristic flexed con-
figuration [Fig. 3(a)]. In contrast, for sufficiently large δ, a
loop transits continuously to a helicoidal shape. This
transition is similar to the spontaneous spiral-to-helicoid
transition studied previously [29,30]. The distinction
between these two morphologies is based on the shape
of the ribbon’s centerline. The “flexed” shape has a
localized curvature at its middle, while the “helicoid”
has an approximately straight centerline. For a given
parameter set of (L, b), a critical gap distance δPT between
these two was experimentally determined in the same way
as δCP, and is plotted in Fig. 2. While the data for different
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FIG. 2. Transition-type diagram in the stretching process for a
looped paper ribbon, drawn on the ðb=L; δ=LÞ parameter space.
Symbols are data from our δ-controlled experiments for different
lengths L and widths b. δCP and δPT represent the boundaries
between creased (C) and pop out (P), and between pop out and twist
(T) transitions, respectively. The inset is a log-log plot of the same
dataofδCP, suggestingdatacollapsewithpowerlawofexponent1=2.
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L are scattered, it appears to be generally concave. We will
return to the physical interpretation of this later on.
To quantify the nature of the pop out, we measured the

height H of a ribbon (see Fig. 1) with (212,5,25) as a
function of the extension u [Fig. 3(b)]. This plot manifests
the discontinuous increase in H at the pop out. In the
inverse (i.e., compressing) process, the discontinuous shape
change occurs at a different u, resulting in a large hysteresis
during the cycle process, a hallmark of athermal bistable
systems.
An insight is obtained by a top-view observation and by

comparison with that of a looped slender silicone rubber
rod [Figs. 4(a) and 4(b)]. In the earlier stage of the
stretching, the loop in the ribbon shrinks keeping its
orientation along the stretching axis, while the loop in
the rod rotates and gradually opens. These distinctly
different behaviors are attributed to the cross-sectional
shape, as demonstrated by our numerical simulations
explained below [Figs. 4(c) and 4(d)]. For a ribbon, the
out-of-plane bending costs much lower energy than
the twisting that involves in-plane stretching. This is
why the loop initially gets smaller as it is stretched.
However, when the loop is tightened and its bending
curvature becomes sufficiently large, the cost of stretching
becomes comparable to that of bending, leading to the pop-
out twist transition. Note that such a process is distinctive to
a slender object with a highly anistropic cross section,
quantified by b=h. For rods with isotropic cross section,
bending and twisting occur simultaneously, which enables
the continuous loop opening [Figs. 4(b) and 4(d)]. When
the aspect ratio b=L decreases, the anisotropy, i.e., b=h,

also decreases, and the loop is likely to open continuously.
This explains the behavior of δPT=L in Fig. 2 for
b=L < 0.04. Nevertheless, in the limit of the self-contact,
the pop out prevails even in a thin metal rod with a circular
cross section, as shown in Ref. [23]. We also observed
that a silicone rubber ribbon, being elastic up to very large
strains, undergoes a twist transition even for δ < δCP,
accompanying significant in-plane stretch around the loop.
This suggests that the crease transition is less likely for
more stretchable ribbons. Further investigation on a hypere-
lastic ribbon is currently under progress and the results
will be reported elsewhere [28].
The observed elastic responses are rationalized by our

numerical simulations based on the method originally
introduced in Ref. [31]. In short, our method relies on
the Kirchhoff elastic rod formulation for a narrow ribbon
(L=b ≫ 1), in which a weak stretch is considered in a
perturbative way similar to Ref. [29]. In the dynamical
simulations, a ribbon centerline is a chain of N ¼ L=a
segments of constant length and mass, and the position and
velocity of each segment evolve according to Newton’s
equations of motion with viscous damping terms. Upon
rescaling of the equations, all values of the nondimensional
parameters are taken from our experiments. The compu-
tation thus contains no adjustable parameters, except for the
damping parameter. Our numerical results are insensitive to
precise values of the damping parameter, as long as the
dynamics is underdamped as valid to our experiments.
A direct comparison between the simulations and experi-

ments is shown in Figs. 3(b) and 3(c). The agreement is
quantitative in Fig. 3(c) for δ ¼ 45 mm, and is less
satisfactory in Fig. 3(b) for δ ¼ 25 mm. The latter is
expected, because as δ gets smaller, the in-plane stretch
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FIG. 3. (a) Superimposed photograph of a stretched looped
ribbon during its pop out. (b),(c) Comparison between experi-
ments and simulations. Rescaled height of the ribbon’s top, H=L,
plotted as a function of u=L in the stretching and compressional
processes. Symbols are experimental data (stretching: blue
filled circles; compression: green asterisks), and solid lines are
numerical simulation data. The parameters used are (b) ðL;b;δÞ¼
ð212;5;25Þ and (c) (212,5,45).
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FIG. 4. Comparison of the top views of the loop-opening
(i.e., stretching) processes. (a) Paper ribbon with ðL; b; δÞ ¼
ð212; 5; 30Þ. (b) Silicone rubber rod with circular cross section
of diameter 3 mm with ðL; δÞ ¼ ð212; 30Þ. (a) and (b) are the
experimental observations. (c) and (d) represent the centerline
configurations during stretch from our numerical simulations for
(c) a ribbon and (d) an isotropic rod.
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becomes progressively more significant beyond the validity
of our model [32].
To overcome the difficulty manifested for the small δ

regime, we now develop a simple scaling argument instead
of extending the numerical approach. We argue on the
critical loop size R� at the pop out, focusing on the
stretching process. First, we note that an external force
applied at the ends scales as F ∼Db=R2, where R is a
typical loop size and D ¼ Eh3=12ð1 − ν2Þ is a ribbon’s
bending modulus (E is the Young’s modulus and ν is the
Poisson ratio) [9]. The external moment that tries to rotate
the loop is thus Mext ∼ Fδ ∼Dbδ=R2 (see Fig. 5, left).
At the pop out, this moment balances with the internal
elastic moment Mtwist, which consists of two parts,
Mtwist ¼ MKirch þMstretch. Here, MKirch ∼Dbτ is the linear
Kirchhoff twisting moment (arising from the strain energy
over the thickness of the ribbon), while Mstretch arises from
the in-plane stretch elasticity, where we have introduced the
twist per unit length τ that scales as τ ∼ 1=δ at the pop out.
To establish the scaling for Mstretch, we assume a helicoidal
twisting with its Gaussian curvature −τ2. This induces the
in-plane strain ϵ ∼ −b2τ2, and the corresponding elastic
energy per unit length Estretch ∼ Eϵ2bh ∼ Ehb5τ4, leading
to Mstretch ∼ Ehb5τ3. By equating MKirch and Mstretch to
examine the relative significance, we conclude that the
linear relation Mtwist ∼MKirch holds for ξ ≪ δ, while the
nonlinear response Mtwist ∼Mstretch dominates for ξ ≫ δ,
where we have defined the characteristic length ξ ∼ b2=h.
The nondimensional parameter δ=ξ thus measures the
relative importance of in-plane stretching over the bending,
analogous to the Föpple–von Kármán number for curved
shells [33].
For ξ ≪ δ, Mext ∼Mtwist results in the simple scaling

relation given by R� ∼ δ. In contrast, for ξ ≫ δ, balancing
Mext with Mstretch yields a different scaling given by
R� ∼ δ2=ξ. Therefore, we conclude

R�=ξ ∼

8
<

:

δ=ξ for δ=ξ ≫ 1

ðδ=ξÞ2 for δ=ξ ≪ 1.

ð2Þ

To validate the prediction in Eq. (2), the rescaled critical
height of the ribbon’s top H�=ξ obtained for varying L, b,
and δ in our physical experiments are plotted against the
rescaled gap distance δ=ξ in Fig. 5 (the inset is a plot of the
same data in the physical units). Note that we have used
ξ ¼ ðEhb4=720DÞ1=2 ≈ 0.12b2=h derived from the pertur-
bation theory [28,29], where ν ¼ 0.3 is assumed.
Note also that we make use of H� instead of R� for the

comparison in Fig. 5. Considering the difficulty in deter-
mining R� directly from the experimental images, H� is
advantageous because it is comparable to 2R� and is
determined precisely from Fig. 3. The data collapse
perfectly owing to the rescaling by ξ, and the different
slopes cross over at around δ=ξ ∼ 1–2, in full agreement
with Eq. (2). Not surprisingly, the predicted exponents are
less convincing, as H� may receive an additional contri-
bution from the ribbon’s arm, and a weak plastic response
might be involved. Nevertheless, Fig. 5 demonstrates that
this elastic instability is fully governed by the single
characteristic length ξ.
Compiling all the results obtained so far, we propose the

following physical scenario. Initially, a ribbon behaves like
a developable surface, and the loop progressively gets
smaller during the stretching because of its bending
anisotropy. In this regime, the overall ribbon shape is well
represented by the 1D centerline geometry. As the curva-
ture of the loop becomes even larger, the elastic stress
further concentrates around the loop. For δ < δCP given in
Eq. (1), the loop geometry undergoes the dimensional
crossover from 1D- to 2D-like, leading finally to a crease
formation. This marks the breakdown of ribbon’s elasticity.
In contrast, for δ > δCP, there opens an alternative route
for a ribbon to avoid such a stress focusing. The ribbon
pops out, making use of its 3D configurational degrees
of freedom. For this transition, the ribbon has to pay the
energetic costs of in-plane stretch, compromising its
developability. However, the ribbon responds elastically
throughout the regime, which could be described by the
existing effective 1D ribbon models.
In summary, by combining experiments and theory,

we have investigated the distinct mechanics of a looped
ribbon under tension, and demonstrated the central role of
the characteristic length ξ ∼ b2=h. One may surely notice,
however, that papers are not ideal elastic materials [34]; a
permanent natural curvature arises due to creeplike defor-
mations [35]. This will significantly affect the unfolding
dynamics of a tight loop [36]. It is also important to
investigate whether the same physical scenario described
here applies to ribbons made from other materials such as
glass or metals, as well as nanoscale materials [38,39]. The
experimental setup studied here is simple enough, yet raises
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FIG. 5. Left: Schematics on the ribbon’s shape and definition of
the variables used in the scaling argument. Right: Rescaled plot of
the critical ribbon height H�=ξ vs δ=ξ obtained from our physical
experiments for different ribbon width b and length L. Inset is the
plot of the same data in the physical units.
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a number of interesting open questions, which will thus
prolifically generate challenging future subjects.
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