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We evidence critical fluctuations in the strain rate of granular flows that are weakly vibrated. Strikingly,
the critical point arises at finite values of the mean strain rate and vibration strength, far from the yielding
critical point at a zero flow rate. We show that the global rheology, as well as the amplitude and correlation
time of the fluctuations, are consistent with a mean-field, Landau-like description, where the strain rate and
the stress act as conjugated variables. We introduce a general model which captures the observed
phenomenology and argue that this type of critical behavior generically arises when self-fluidization
competes with friction.
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Fluctuations play an essential role in flows of disordered
media [1–17]. In the simplest scenario, such fluctuations
are rate independent, as in thermal systems or strongly
vibrated granular flows [16–18]. New phenomena arise
when fluctuations are generated by the flow itself, as
observed for emulsions [5], foams [6], and granular matter
[7–13]. Self-fluidization is particularly spectacular for
granular media: for example, the finite yield threshold, a
hallmark of static granular media, completely vanishes in
the presence of flow anywhere in the granulate [9–13]. The
reasons are, first, that the particles are so hard that tiny
motions cause large fluctuations in the contact forces [8,19]
and, second, that sliding friction is nearly rate independent.
Self-fluidization also qualitatively modifies the flowing
properties of granular media; when the imposed stress is
lowered, the flow is found to stop discontinuously: stress-
controlled granular flows have a nonzero minimal flow rate
[10,20,21].
What is the precise role of fluctuations for granular

flows? Can local fluctuations organize in strong and slow
collective fluctuations? How can we model the mutual
coupling between fluctuations and flow? To answer these
questions, we probe the fluctuations and the flow of weakly
vibrated granular media sheared in a vertically vibrated
split-bottom cell [9,10,22]. Here, the flow is driven by the
rotation of a disk at the bottom of the cell, with the rate
quantified by the dimensionless parameter S—to be pre-
cisely defined below—while the dimensionless driving
torque T is measured [Fig. 1(a)]. For the low vibration
strength Γ, the flow curves TðSÞ exhibit three distinct
regimes [Fig. 1(a)]: a vibration dominated flow regime
(low S, positive slope) and an inertial flow one (large S,
positive slope) separated by a self-fluidized flow one
(intermediate S, negative slope). However, for vibration
strengths Γ larger than a critical vibration strength Γc, the
self-fluidized flow regime disappears [10].

In this Letter, we report on a new and crucial exper-
imental fact illustrated in Figs. 1(b) and 1(c). First, by
controlling the driving torque T and measuring the time-
resolved rotation rate SðtÞ, we reveal that, decreasing Γ
towards Γc, fluctuations in S become increasingly large and
slow when ðT;ΓÞ → ðTc;ΓcÞ [Figs. 1(b) and 1(c)]. Second,
we show that the flow curves TðSÞ, obtained at a fixed S,
and their variation as a function of Γ can be captured in a
mean-field-type expansion around (Tc, Γc). Together, these
experiments evidence the existence of a nonzero or finite
flow-rate (FFR) critical point. While strong fluctuations
have been studied near the zero flow-rate yielding point [2],
we stress that critical fluctuations at FFR critical points
have not been reported before, presumably because they
remain hidden in the absence of an external source of
vibrations. Finally, we introduce a general model that
combines a microscopic frictional rheology with fluctua-
tions of the microscopic stresses. This model successfully
describes the experimentally observed Γ-dependent rheol-
ogy and the emergence of the FFR critical point, naturally
capturing the intricate coupling between stress, flow rate,
and fluctuations. Our results suggest that the FFR critical
point is robust and that similar critical behavior may arise in
other frictional or nearly rate-independent systems, leading
to potentially hazardous fluctuations in previously over-
looked flow regimes.
Setup and phenomenology.—The widely studied split-

bottom geometry [9,10,14,22] produces smooth and well
controlled granular flows. Our cell consists of an acrylic
cylindrical container (inner radius 7.0 cm), at the bottom of
which a rotating disk of radius rs of 4 cm drives the flow.
The roughness of the top surface of the disk and the
cylinder bottom ensures no-slip boundary conditions. The
cell is filled to a height h of 24 mm with black soda-lime
glass beads with diameters d ¼ 1.15� 0.15 mm. For such
a filling height, the flow is a vertical shear band located
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above the split in the bottom. An Anton Paar DSR 301
rheometer, which can be employed in rate- or torque-
controlled mode, sets the dimensional driving torque ~T or
the rotation rate Ω. We vertically vibrate the system as
A sinð2πftÞ, with f ¼ 63 Hz, and control the dimension-
less vibration strength Γ ¼ Að2πfÞ2=g, where g is the
gravitational acceleration. The disk rotation is probed with
an optical angular encoder (Heidenhain ERO 2500) directly
coupled to the disk. We express our results in dimensionless
units T ≔ ~T= ~Ty, where ~Ty is the dynamic yield torque (T in
the limit S → −∞) in the absence of external vibrations and
S ≔ logðIÞ, where I ¼ Ωd=ðghÞ1=2 is the so-called appa-
ratus scale inertial number [3].
We note that, in torque-controlled experiments,

Γc ¼ 0.65� 0.01—as will be determined from both the
zero slope inflection point of the torque-controlled flow
curves and the divergence of fluctuations—while, in rate-
controlled experiments, Γc ¼ 0.46� 0.01, as will be
determined from the zero slope inflection point of the
rate-controlled flow curves. We believe this difference
to be due to the complex combination of large intrinsic

fluctuations, finite size effects, and the nonperfect feedback
loop of the rheometer in rate-controlled experiments.
Critical fluctuations.—We first perform experiments at

constant torque T and vibration strength Γ > Γc and
determine the magnitude and correlation time of the
fluctuations in rotation rate via the instantaneous angular
position θðtÞ of the bottom disk. We extract the rotation rate
ωðtÞ ≔ ∂tθðtÞ, after carefully checking to see that θðtÞ is
probed at sufficiently high temporal resolution. We then
compute the averaged rotation rate ω̄ ¼ hωi, the amplitude
of its fluctuations σ2ω ¼ hδω2i, and the temporal correla-
tions RðτÞ ¼ hδωðtþ τÞδωðtÞi=σ2ω, where δω ¼ ω − ω̄
and h·i denote temporal averages. The correlation time
τc is extracted by fitting the autocorrelation to an expo-
nential (and is consistent with the time obtained by
integrating the correlation function). Figures 2(a) and 2(b)
display the resulting dimensionless fluctuation amplitude
σω=ω̄ and the dimensionless correlation time τcω̄ as a
function of the relative torque T�ðΓÞ¼(T−TiðΓÞ)=TiðΓÞ,
where TiðΓÞ is the inflection point observed in the flow
curves, which separates the vibration dominated flow
regime, from the fast inertial flow regime, for values of
Γ > Γc. There is a sharp contrast between the fluctuations
at either side of the peaks: the vibration dominated flow
regime has strong but short-time correlated fluctuations,
while the fast inertial flow regime has small fluctuations
with a time scale ≈ω̄−1. Crucially, there is a sharp transition
between these regimes: both the fluctuation amplitude
σω=ω̄ and the correlation time τcω̄ exhibit a sharp
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FIG. 2. Critical fluctuations. (a),(b) Fluctuation magnitude
σω=ω̄ as a function of T� for Γ ∈ ½0.65; 0.94�. (Inset) ~σω and
σω are essentially equal. (b) Correlation time τcω̄ as a function of
T�. (Inset) ~τc scales linearly with τc. (c),(d) Evidence for critical
scaling of, respectively, σ�ω and τ�c with Γ� in two data sets taken
several weeks apart.
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FIG. 1. (a) Flow curves obtained in a vibrated granular media
sheared in a split-bottom cell: dimensionless torque T as function
of the rotation rate expressed by the dimensionless parameter S
(see the setup and phenomenology section for a precise defi-
nition), for a range of vibration strength Γ ∈ ½0.3; 0.7�. For
Γ < Γc ≈ 0.46, the flow curves exhibit a minimum. (Inset)
Schematic of a vibrated split-bottom shear cell, indicating the
important parameters. (b),(c) Rotation rate fluctuations SðtÞ
detected in torque-controlled experiments. (b) Strong and slow
fluctuations close to the finite flow-rate (FFR) critical point
(Sc, Tc) indicated in (a) [ðT;ΓÞ ¼ ð0.84; 0.71Þ]. (c) Small fluc-
tuations away from the critical point [top, ðT;ΓÞ ¼ ð0.85; 0.71Þ;
bottom, ðT;ΓÞ ¼ ð0.79; 0.92Þ]. Note that, in torque-controlled
experiments, Γc ≈ 0.65 (see the text).
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maximum at T� ≃ 0, which rapidly grows when
Γ� ¼ ðΓ − ΓcÞ=Γc → 0þ. The peak in the rotation rate
fluctuations diverges in a manner consistent with a
power-law scaling ∼Γ�−~γ , with ~γ ≈ 0.5 [Fig. 2(c)]. The
correlation times are too noisy to be reliably fitted to a
power law Γ�−μ, but, if any, μ ∈ ½0.5; 1� [Fig. 2(d)].
Together, these signals provide strong evidence for critical
behavior. To check the robustness of our measurements, we
also determine the fluctuation magnitude and the correla-
tion by considering the rotating disk as a massive random
walker with drift. We thus characterize the mean square
angular displacement ΔθðtÞ2 ¼ h(θðt0 þ tÞ − θðt0Þ)2i. The
amplitude of the rotation rate fluctuations ~σω and the
correlation time ~τc are then extracted from the asymptotics:
for t=~τc ≪ 1, the dynamics is ballistic with ΔθðtÞ2 ∼ ~σ2ωτ,
while, for t=~τc ≫ 1, it is diffusive, with ΔθðtÞ2 ∼ 2~σ2ωτct.
These two independent protocols yield consistent results, as
shown in the insets of Figs. 1(a) and 1(b).
Scaling of the flow curves.—The critical behavior

reported above suggests that the torque and the rotation
rate should be related via a Landau expansion in the critical
regime:

T ¼ aðS − SiÞ3 þ bðS − SiÞ þ Ti; ð1Þ

where (TiðΓÞ; SiðΓÞ) are the inflection points of the flow
curves. In order to probe this relation, we perform rate-
controlled experiments in which we can also access the
negative slope regime. The flow curves, shown in Fig. 1(a),
are indeed reminiscent of a third order polynomial. Fitting
the data accordingly, we extract (Si, Ti), a and b, and the
local maximum (Sþ, Tþ) and minimum (S−, T−) as a
function of Γ. As shown in Fig. 3(a), the flow curves can be
rescaled on two distinct branches, below and above Γc, over
a substantial range. As expected, the cubic coefficient a
remains essentially constant (a≃ 2; not shown here). The
coefficient b, which sets the slope at the inflection point,
akin to an inverse susceptibility χ−1, crosses zero at Γ ¼ Γc
and increases linearly with Γ�. The location of the extrema
(S�, T�) in the (S, Γ) and (T, Γ) planes, displayed in
Figs. 3(c) and 3(d), together with the location of the
inflection point (Si, Ti), determines the so-called spinodal
lines, which are the stability limits of the fast and slow flow
phases. The region of “coexistence” corresponds here to the
set of parameters for which the flow curves have a negative
slope. The width of this region Δ ¼ Sþ − S− scales like
jΓ�jβ, with β ¼ 0.5 for Γ� < 0, in agreement with Eq. (1)
and the linear dependence of b with Γ�.
FFR critical point.—Our data for both torque-controlled

and rate-controlled experiments provide strong evidence
for the existence of a critical point at a finite flow rate,
characterized by the following scaling relations:

Δ ∼ Γ�β; β≃ 0.5 ð2Þ

χ ∼ Γ�−γ; γ ≃ 1 ð3Þ

σω=ω̄ ∼ Γ�−~γ; ~γ ≃ 0.5 ð4Þ

τcω̄ ∼ Γ�−μ; μ ∈ ½0.5; 1�: ð5Þ

The fact that the critical behavior of χ, obtained for averaged
quantities in rate-controlled experiments, and that of σ2ω,
obtained from the fluctuations in torque-controlled experi-
ments, coincide is a strong indication of the relevance of our
analysis. Both the value of the exponents and the quality of
the description of the flow curves by Eq. (1) suggest that a
mean-field description should capture the essence of the
observed phenomenology.
Flow model.—Finally, we introduce a general fluctuation-

frictional (FF) model that captures the observed rheology.
We combine a frictional local rheology with fluctuations that
are induced by both vibrations and flow, and we show that
the average rheology of this model exhibits all of the
experimentally observed hallmarks, including the FFR
critical point. First, we introduce an agitation strength A,
which is a function of both flow-induced and vibration-
induced agitations [23]:

A ¼ AgðΓ; IÞ; ð6Þ

where Ag ¼ 0 only when both Γ and I are zero. Second, we
postulate that the local stresses Tm are fluctuating around
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FIG. 3. (a) Flow curve data collapsed onto master curves for
Γ ∈ ½0.3; 0.7�. (b) Inverse susceptibility χ−1 vs Γ. (Inset) Log-log
plot of Δ ¼ Sþ − S− as a function of −Γ�. (c),(d) Location of the
extrema (S�, T�) and the inflection point (Si, Ti) in the planes
(Γ, S) and (Γ, T). The vertical dashed line indicates Γc.
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their mean T, and that the microscopic stress distribu-
tion PðTmÞ ¼ P̄(ðTm − TÞ=A), where P̄ðxÞ is a given
normalized distribution centered at x ¼ 0—note that A sets
the width of PðTmÞ. Third, we determine the global flow rate
I as the mean of the microscopic flow rates Im, where Im and
Tm are related by simple frictional Herschel-Bulkley rheol-
ogy with a finite yield stress—in particular, Im ¼ 0 when
jTmj < 1. Combining these ingredients, we find

IðA; TÞ ¼
Z

∞

−∞

dTm

A
P̄
�
Tm − T

A

�
ImðTmÞ: ð7Þ

For a prescribed set of functions Ag; P, and ImðTmÞ, Eqs. (6)
and (7) completely set the flow curves TðI;ΓÞ. We start with
a definite choice of Ag, P̄, and Im [24], then show that our
conclusions are insensitive to this choice (details are
provided in the Supplemental Material [25]).
We now show that the FF model captures all of the

qualitative features of the rheology of the weakly vibrated
flows. First, it exhibits the experimentally observed singu-
larity of the stress TðI; AÞ at the origin: when A ¼ 0, Eq. (7)
implies that Tm ¼ T, Im ¼ I, so that the macrorheology is
identical to the microscopic rheology and Tð0þ; 0Þ ¼ 1. In
contrast, when A > 0 but I ¼ 0, Eq. (7) implies that the
stress distribution must be symmetric around zero—
therefore, T ¼ 0 and, in particular, Tð0; 0þÞ ¼ 0. The
model thus captures the discontinuous vanishing of
the yield stress when Γ becomes finite. To proceed further,
the solutions to this model can be understood by consid-
ering the variation of Γ and T in the ðI; AÞ plane (Fig. 4).
The flow curves TðI;ΓÞ can be determined graphically via
the intersections of the contour curves of T and Γ by fixing
Γ, varying T, and determining the corresponding value(s)
of I. For T > 1 there is only one intersection,

corresponding to rapid flows, and in the remainder we
focus on T ≤ 1. (i) For a large Γ, there is only one
intersection (the black dot), leading to monotonic flow
curves TðIÞ. (ii) For a small Γ, there are three intersections
(the crosses), corresponding to nonmonotonic flow curves.
(iii) In between these two regimes is the critical Γc curve
(red), for which the three intersection points merge (the red
dot). (iv) Finally, for Γ ¼ 0, there are precisely two
intersections, corresponding to the only flow curve that
has a finite T and a negative slope at I ¼ 0. We stress that
the scenario that emerges captures the essence of the
experimental flow curves shown in Fig. 1(a), without
having to make any assumptions about the behavior of
A near the FFR critical point.
Clearly, the essence of this scenario does not depend on

the details of the agitation function Ag, the distribution P̄, or
the local rheology Tm. The only condition is that the Γ ¼ 0
curve is steeper than the T ¼ 1 contour at the origin, such
that there are two intersections between the Γ ¼ 0 and
T ¼ 1 curves (for other examples of flow curves, including
occasions when this condition is violated, see the
Supplemental Material [25]).
Discussion.—We have uncovered a dynamical critical

point in agitated frictional flows. We stress again that the
concomitant large fluctuations arise at finite flow rates,
away from the yielding point where strong fluctuations
were seen before [2], which makes this an experimentally
easily accessible yet nontrivial critical point which deserves
further investigation. We have argued that this criticality
emerges from the interplay of external vibration and self-
fluidization. Both act as sources of agitation, but they
influence the rheology very differently: while external
agitations set the yield stress to zero and impose a positive
slope on the limit of zero flow rate, flow-induced fluctua-
tions cause a negative slope in the flow curves, at least in
the absence of externally provided fluctuations. The FFR
critical behavior emerges due to the competition of these
two sources of agitation.
From a more theoretical point of view, the model we

have introduced here is purely phenomenological and is
essentially mean field. An alternative, more complete
strategy would be to write down a dynamical equation
for the microscopic stress distribution, as introduced in the
Hébraud-Lequeux [1] and related fluidity models [26,27],
which at present capture neither the critical scaling of the
flow curves nor the diverging fluctuations. In these models
the self-fluidization is captured by a diffusion term for the
local stresses, the amplitude of which is linearly related to
the amount of stress exceeding the local yield stress.
Adding any finite amount of external noise via a constant
term in the diffusion amplitude, we expect the dynamical
yield stress to vanish as observed here. Then, following
Ref. [27], one could work out the relation between the
model parameters and the flow rate and, hopefully, obtain
the observed nonmonotonic rheology. Stress fluctuations

T

T

FIG. 4. FF model (for details, see Ref. [24]). (a) Contour curves
of constant Γ (blue) and constant T (black). Their intersections,
for example at ðΓ; TÞ ¼ ð0.25; 0.4Þ (the open circle), (0.1,0.7)
(the three triangles), and (0,0.9) (the two squares) determine TðIÞ.
The red contour curves for T ¼ 0.6 and Γ ¼ 0.15 are (nearly)
tangent, leading to the critical point (the red filled circle).
(b) Corresponding flow curves for Γ ¼ 0; 0.05;…; 0.35 (ordered
from top to bottom)—the circles, squares and boxes match those
in (a).
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could also be taken into account following the very recent
work of Agoritsas et al. [28]. It is an open question whether
such models could exhibit a negative slope at zero flow rate
in the absence of external vibrations.
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technical support, and early experiments, and Stichting
voor Fundamenteel Onderzoek der Materie/Nederlandse
Organisatie voor Wetenschappelijk Onderzoek for the
funding.

[1] P. Hébraud and F. Lequeux, Phys. Rev. Lett. 81, 2934
(1998).

[2] D. Howell, R. P. Behringer, and C. Veje, Phys. Rev. Lett. 82,
5241 (1999).

[3] GDR MiDi Collaboration, Eur. Phys. J. E 14, 341 (2004).
[4] O. Pouliquen and R. Gutfraind, Phys. Rev. E 53, 552 (1996).
[5] J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet,

Nature (London) 454, 84 (2008).
[6] G. Katgert, B. P. Tighe, M. E. Möbius, and M. van Hecke,

Europhys. Lett. 90, 54002 (2010).
[7] K. A. Reddy, Y. Forterre, and O. Pouliquen, Phys. Rev. Lett.

106, 108301 (2011).
[8] M. van Hecke, C.R. Phys. 16, 37 (2015).
[9] K. Nichol, A. Zanin, R. Bastien, E. Wandersman, and M.

van Hecke, Phys. Rev. Lett. 104, 078302 (2010); K. Nichol
and M. van Hecke, Phys. Rev. E 85, 061309 (2012).

[10] J. A. Dijksman, G. H. Wortel, L. T. H. van Dellen, O.
Dauchot, and M. van Hecke, Phys. Rev. Lett. 107,
108303 (2011); G. H. Wortel, J. A. Dijksman, and M. van
Hecke, Phys. Rev. E 89, 012202 (2014).

[11] K.Kamrin andG.Koval, Phys. Rev. Lett. 108, 178301 (2012);
D. L. Henann and K. Kamrin, Proc. Natl. Acad. Sci. U.S.A.
110, 6730 (2013); Phys. Rev. Lett. 113, 178001 (2014).

[12] M. Bouzid, M. Trulsson, P. Claudin, E. Clement, and B.
Andreotti, Phys. Rev. Lett. 111, 238301 (2013).

[13] Y. Forterre and O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1
(2008).

[14] G. H. Wortel and M. van Hecke, Phys. Rev. E 92, 040201(R)
(2015).

[15] P. Schall and M. van Hecke, Annu. Rev. Fluid Mech. 42, 67
(2010).

[16] G. Caballero-Robledo and E. Clément, Eur. Phys. J. E 30,
395 (2009).

[17] J. Javier Brey, M. J. Ruiz-Montero, and F. Moreno, Phys.
Rev. E 63, 061305 (2001).

[18] X. Jia, T. Brunet, and J. Laurent, Phys. Rev. E 84, 020301
(2011).

[19] P. Umbanhowar andM. van Hecke, Phys. Rev. E 72, 030301
(2005).

[20] H. Jaeger and Chu-Heng Liu, S. Nagel, and T. Witten,
Europhys. Lett. 11, 619 (1990).

[21] O. Kuwano, T. Hatano, and R. Ando, Geophys. Res. Lett.
40, 1295 (2013).

[22] D. Fenistein, J. W. van der Meent, and M. van Hecke, Phys.
Rev. Lett. 92, 094301 (2004); 96, 118001 (2006); , 6, 2901
(2010).

[23] We use I rather than S in the model, as we want to consider
the absence of flow at I ¼ 0.

[24] We take AgðI;ΓÞ ¼ Γþ ½1 − expð4IÞ�, which captures that
both vibrations and flow induce fluctuations which saturate
for large flow rates, P̄ðxÞ ¼ 1=2 expð−jxjÞ, and Tm follows
the Herschel-Bulkley rheology: Tm ¼ signðImÞ½1þ jImj�,
with Im ¼ 0 when jTmj < 1.

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.198002 for a de-
tailed discussion of the FF model and other examples of
flow curves.

[26] L. Bocquet, A. Colin, and A Ajdari, Phys. Rev. Lett. 103,
036001 (2009).

[27] V. Mansard, A. Colin, P. Chauduri, and L. Bocquet, Soft
Matter 7, 5524 (2011).

[28] E. Agoritsas, E. M. Bertin, K. Martens, and J.-L. Barrat, Eur.
Phys. J. E 38, 71 (2015).

PRL 117, 198002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 NOVEMBER 2016

198002-5

http://dx.doi.org/10.1103/PhysRevLett.81.2934
http://dx.doi.org/10.1103/PhysRevLett.81.2934
http://dx.doi.org/10.1103/PhysRevLett.82.5241
http://dx.doi.org/10.1103/PhysRevLett.82.5241
http://dx.doi.org/10.1140/epje/i2003-10153-0
http://dx.doi.org/10.1103/PhysRevE.53.552
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1209/0295-5075/90/54002
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1016/j.crhy.2014.11.004
http://dx.doi.org/10.1103/PhysRevLett.104.078302
http://dx.doi.org/10.1103/PhysRevE.85.061309
http://dx.doi.org/10.1103/PhysRevLett.107.108303
http://dx.doi.org/10.1103/PhysRevLett.107.108303
http://dx.doi.org/10.1103/PhysRevE.89.012202
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1103/PhysRevLett.113.178001
http://dx.doi.org/10.1103/PhysRevLett.111.238301
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1103/PhysRevE.92.040201
http://dx.doi.org/10.1103/PhysRevE.92.040201
http://dx.doi.org/10.1146/annurev-fluid-121108-145544
http://dx.doi.org/10.1146/annurev-fluid-121108-145544
http://dx.doi.org/10.1140/epje/i2009-10537-0
http://dx.doi.org/10.1140/epje/i2009-10537-0
http://dx.doi.org/10.1103/PhysRevE.63.061305
http://dx.doi.org/10.1103/PhysRevE.63.061305
http://dx.doi.org/10.1103/PhysRevE.84.020301
http://dx.doi.org/10.1103/PhysRevE.84.020301
http://dx.doi.org/10.1103/PhysRevE.72.030301
http://dx.doi.org/10.1103/PhysRevE.72.030301
http://dx.doi.org/10.1209/0295-5075/11/7/007
http://dx.doi.org/10.1002/grl.50311
http://dx.doi.org/10.1002/grl.50311
http://dx.doi.org/10.1103/PhysRevLett.92.094301
http://dx.doi.org/10.1103/PhysRevLett.92.094301
http://dx.doi.org/10.1103/PhysRevLett.96.118001
http://dx.doi.org/10.1039/b925110c
http://dx.doi.org/10.1039/b925110c
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.198002
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1039/c1sm05229b
http://dx.doi.org/10.1039/c1sm05229b
http://dx.doi.org/10.1140/epje/i2015-15071-x
http://dx.doi.org/10.1140/epje/i2015-15071-x

