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We introduce a quantum Monte Carlo (QMC) method for efficient sign-problem-free simulations of a
broad class of frustrated S ¼ 1=2 antiferromagnets using the basis of spin eigenstates of clusters to avoid
the severe sign problem faced by other QMC methods. We demonstrate the utility of the method in several
cases with competing exchange interactions and flag important limitations as well as possible extensions
of the method.
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Quantum Monte Carlo (QMC) simulations compute
equilibrium properties of a many-body system by impor-
tance sampling of the canonical partition function Z ¼
Tr expð−H=TÞ, where H is the many-body Hamiltonian
and T is the temperature [1–3]. They have emerged as a
major tool for the study of lattice Hamiltonians that either
model low-T thermodynamic properties of interesting
strongly correlated materials [4,5] or provide concrete
realizations of novel phases in such condensed matter
systems [6,7]. However, models of geometrically frustrated
magnets [5], in which antiferromagnetic interactions com-
pete with each other due to the geometry of the exchange
pathways, have typically remained beyond the reach of
QMC methods. This is due to the presence of a sign
problem, whereby the weights assigned to individual
Monte Carlo configurations are no longer strictly positive
in the commonly used basis of eigenstates of Sz~r, the z
component of each spin. In such cases, the average sign
decreases exponentially with the system size and inverse
temperature, leading to unmanageably large statistical
errors in the estimation of physical quantities. A similar
sign problem crops up in diverse settings ranging from
QCD to strongly correlated metals, and a general solution is
considered unlikely [8].
Limited progress has been possible in a few cases, for

instance, in anisotropic systems in which the frustration
affects only Sz~r (thereby allowing sign-free simulation in the
z basis [9–17]) or when the sign problem of the full theory
can be finessed at low T by working with a low-energy
effective Hamiltonian which has no sign problem [18–22].
For some models, sign-free simulations are possible by
virtue of specific symmetries of the Hamiltonian [23–29].
In other strongly correlated systems with a full-fledged
sign problem, progress has been made in some cases by
developing improved estimators for computing physical
observables [30–33]. In principle, one could also try to find
an alternate basis in which all configurations have positive
weights. However, this has been possible only in a few

interesting cases [34,35], including some models of topo-
logically ordered states of matter [36–38].
Synopsis.—In this Letter, we introduce a QMC method

that works in the basis of spin eigenstates of clusters to
simulate a large class of frustrated quantum magnets in a
provably sign-free manner. We focus our discussion on
systems in which the clusters in question are made up of
two spin-1=2moments (~SIr and ~SIIr) located on layers I and
II at sites r of a bipartite Bravais lattice in any spatial
dimension (Fig. 1), with Hamiltonian
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FIG. 1. Vertices that appear in the SSE operator string forHbilayer,
with correspondingweights in the canonical cluster basis. All other
valid vertices are obtained by symmetry operations that exchange
left and right, or upper and lower, legs (keeping the weight fixed).
The constant C in the function fðlA; lB;mA;mBÞ¼C−JzmAmB−
ζðΔz−Δ⊥Þðm2

Aþm2
BÞ− ζΔ⊥½lAðlAþ1Þþ lBðlBþ1Þ� is chosen

to ensure that f ≥ 0. Bottom right: Lattice structure and exchange
couplings of Hbilayer. Vertices and lattice structure for Hmixed are
detailed in Supplemental Material [56].
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where the nearest-neighbor links of this Bravais lattice have
been denoted by hrarbi to emphasize its bipartite nature

and ~S⊥I=IIr represents the vector formed by the two transverse
components (x and y) of these spins. Geometric frustration
of the exchange interactions leads to a severe sign problem
for other QMC methods whenever D⊥K⊥J ⊥ > 0. Our
central result is that such frustration leads to no sign
problems in our method whenever the interactions in
Hbilayer are constrained to satisfy at least one of the
following three conditions: (i) Kz ¼ J z; (ii) K⊥ ¼ J ⊥;
(iii) K⊥ ¼ −J ⊥. Fully frustrated bilayer systems [39–44],
which have infinitely many conserved quantities, represent
a special case with (i) and (ii) both being satisfied. The
method also works when the B sublattice only hosts a

single spin-1=2 moment ~Srb that couples symmetrically to
~SIra and ~SIIra on neighboring A sublattice sites [45–47]:

Hmixed ¼
X

hrarbi
ðJ zS

z
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For D⊥ > 0, the usual QMC method has a sign problem,
which is no longer present in our QMC scheme. Our
method is also expected to apply to other such models with
infinitely many conserved quantities [48–54]. Additionally,
(iii) includes interesting examples of frustrated bilayer
magnets with full SU(2) symmetry and no extra conserva-
tion laws. Some of our results have been obtained inde-
pendently in recent parallel work [55].
Key idea.—We use the stochastic series expansion (SSE)

QMC framework [3] and work at each Bravais lattice site r
in the basis fjl; mig of simultaneous eigenstates of the total

spin ~L2
r and its z component Lz

r, with eigenvalues lðlþ 1Þ
and m, respectively. For Hbilayer, we define ~Lr ¼ ~SIr þ ~SIIr
on both sublattices. For Hmixed, this is modified on the B

sublattice by defining ~Lrb ¼ ~Srb . We decompose the
Hamiltonian into terms living on bonds hrarbi of the
bipartite Bravais lattice, with the terms proportional to
Dz and D⊥ at each site r being shared equally among all
bonds emanating from r:
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with ~L⊥
r the vector made of transverse (x=y) components of

~Lr, ~Nr ¼ ~SIr − ~SIIr, L�
r ¼ Lx

r � iLy
r , N�

r ¼ Nx
r � iNy

r , ζ

the inverse coordination number of the bipartite lattice, C a
constant introduced to ensure negativity of all matrix
elements of the diagonal operator H1hrarbi in our chosen
basis, and Δμ ¼ Dμ=2, Jμ ¼ ðJ μ þKμÞ=2, Kμ ¼ ðJ μ −
KμÞ=2 (for μ ¼ z, ⊥). Using this decomposition, we have
Hbilayer ¼

P
hrarbiH1hrarbi þH3hrarbi þHþ

2hrarbi þHþ
4hrarbiþ

H−
2hrarbi þH−

4hrarbi. Hmixed, when decomposed in the same

way, has analogs only of the H1hrarbi and H�
2hrarbi

terms [56].
Working within the SSE framework with this decom-

position of Hbilayer, one writes

Z ¼
X∞

n¼0

1

n!Tn

X

Sn

hα0jð−HnÞjαn−1ihαn−1jð−Hn−1Þjαn−2i…

× hα1jð−H1Þjα0i; ð4Þ

where the sum over operator strings Sn of length n is
implemented by allowing each jαji to range over the full
basis of states and each Hj to range over all bond operators
H1hrarbi, H�

2hrarbi, H3hrarbi, and H�
4hrarbi. Along with the

factor of 1=ðn!TnÞ, the product of matrix elements appear-
ing in the summand serves as the Monte Carlo weight of
each operator string, and the QMC simulation proceeds by
performing an importance sampling of Z.
Proof of positive-weight property.—Clearly, the weight

of an operator string does not depend on the choice of
arbitrary phase factors attached to individual basis states,
since these phase factors cancel in pairs in the product of
matrix elements that sets the weight. Fixing these phases,
we define the canonical cluster basis as follows: jsi ¼
ðj↑I↓IIi − j↓I↑IIiÞ=

ffiffiffi
2

p
, jtþ1i ¼ j↑I↑IIi, jt−1i ¼ j↓I↓IIi,

and jt0i ¼ ðj↑I↓IIi þ j↓I↑IIiÞ=
ffiffiffi
2

p
. Next, we classify the

off-diagonal matrix elements contributing to the weight of
an operator string into five types (Fig. 1): (i) m-type
processes that hop one quantum of Lz along link hrarbi
between two neighboring triplet clusters, (ii) l-type proc-
esses that exchange the states jsi and jt0i of two neighbor-
ing clusters, (iii) p-type processes that take neighboring
singlet clusters and promote both to the jt0i state or vice
versa, (iv) lm-type processes that exchange singlet and
triplet states of neighboring clusters and simultaneously
hop one quantum of Lz, and (v) pm-type processes that
take neighboring singlet clusters to states jt�1i and jt∓1i,
respectively, or vice versa.
All processes of a given type have a fixed sign for the

corresponding matrix elements between basis states (Fig. 1).
Therefore, a positive weight is guaranteed ifN t, the number
of occurrences (in any stringSn) of t-type processes, has even
parity for each type t. These parities are constrained by the
periodicity of the operator string Sn; i.e., the starting state
jα0i is recovered after the action of n operators. Since pair
creation of the l quantum number must be balanced by
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corresponding pair destruction processes, N p þN pm must
be even. Since a bipartite lattice has only loops of even
length, the number of occurrences of processes that hop
the m quantum number must be even, implying that N m þ
N pm þN lm is even. By the same argument applied to the l
quantum number, N l þN lm must also be even.
Since H�

2hrarbi gives rise only to m-type processes, while
H3hrarbi gives rise to l-type and p-type processes and
H�

4hrarbi gives rise to lm-type and pm-type processes,K⊥ ¼
0 (Kz ¼ 0) impliesN lm ¼ N pm ¼ 0 (N l ¼ N p ¼ 0). The
periodicity constraints then imply that all nonzero N t are
even in both these cases. As a result, in both these cases,
each Sn has positive weight in this QMC scheme regard-
less of the sign of all nonzero couplings. On the other hand,
if J⊥ ¼ 0, i.e.,N m ¼ 0, only pm-type processes can create
or destroy pairs ofm ¼ �1 states on neighboring sites, thus
ensuring thatN pm is even. Along with the other periodicity
constraints, this again implies that all nonzeroN t are even,
yielding a sign-problem-free method whenever J⊥ ¼ 0,
independent of the sign of other couplings.
Thus, the Monte Carlo weight is positive for frustrated

bilayer magnets with Hamiltonian Hbilayer when at least one
of the following conditions is satisfied: (i) Kz ¼ J z;
(ii) K⊥ ¼ J ⊥; (iii) K⊥ ¼ −J ⊥. When (i) and (ii) are both
satisfied, one obtains fully frustrated bilayer systems [39–44]
with infinitely many conservation laws, which can have
either SU(2) or U(1) symmetry. Additionally, (iii) also
contains other examples of SU(2) symmetric frustrated
magnets (e.g., for Jz ¼ J⊥ ¼ 0, Kz ¼ K⊥ > 0, and
Δz ¼ Δ⊥ < 0) and no extra conservation laws. A similar
argument establishes the absence of a sign problem for
Hmixed [56].
Alternately, this positive-weight property can be made

explicit by switching from the canonical cluster basis to a
rotated basis obtained by attaching phase factors eiθjlmiþiηjlmi

to the states jl; mi. Here, the θjlmi are r independent,while the
ηjl;mi are 0 on the B sublattice and constant on the A
sublattice. These phases are chosen in each of these three
generic cases to ensure that every nonzero contribution to the
weight in the rotated basis is explicitly positive. For instance,
when K⊥ ¼ 0, we set ηjt�i ¼ θjl;mi ¼ 0 (for all l, m) while
independently choosing ηjsi to be 0 or π and ηjt0i to be 0 or π
depending on the signs of Kz and J⊥. The other sign-free
cases can be handled with slightly different choices for these
phase factors [56]. The positive-weight property of Hmixed
can also be made explicit in the same way [56].
Implementation.—A key advantage of this QMC

approach is that the usual SSE framework [3] remains
valid with no change in the construction of the diagonal
update and one new feature in the construction of directed
loop updates: Three different kinds of directed loop updates
[57,58] are now possible, involving changes to the m
quantum number, the l quantum number, or both.
Additionally, to improve statistics, one can use parallel

tempering [59] as well as an additional local update, which
identifies worldlines that are only touched by diagonal
vertices, and changes their state using Metropolis-type
acceptance probabilities.
Benchmarks.—Our implementation, which incorporates

all these updates, has been successfully benchmarked
against exact diagonalization in spatial dimension d ¼ 1
for all the sign-free cases, including the two special cases
with infinitely many conserved quantities [56]. In Fig. 2
(inset), we illustrate this for a representative example,
focusing on the susceptibility χ ¼ βhðSzÞ2i=N and specific
heat per spin Cv ¼ 1

N ðdhHi=dTÞ for Hbilayer in d ¼ 1, with
K⊥ ¼ 0 (N ¼ 2L is the number of spins 1=2 in a ladder of
length L). Data in the main panel illustrate the power of the
method, which allows us to access the thermodynamics of
this frustrated ladder for fairly large L up to low T and for a
range of values of Kz.
Numerical results in d ¼ 2.—We now consider Hbilayer

on a square Bravais lattice in the presence of an additional
magnetic field, which our method can handle without a
sign problem: H ¼ Hbilayer − h

P
rðSzIr þ SzIIrÞ (the mag-

netic field modifies only weights of the diagonal vertices).
The physics of the fully frustrated special case
(Kz ¼ K⊥ ¼ 0) in a certain field range was argued [60]
to be dominated at low temperatures by sublattice-ordered
configurations in which two-spin clusters on one sponta-
neously chosen sublattice are in the triplet state jtþ1i,
while two-spin clusters on the other sublattice are in a
singlet state jsi, allowing a low-temperature mapping to the
ordered phase of hard squares on the square lattice. This
predicts that the system undergoes a temperature-driven
phase transition in the 2d Ising universality class to a
high-temperature phase in which sublattice symmetry is
restored [60,61].
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FIG. 2. Temperature (T) dependence of the susceptibility and
specific heat of Hbilayer with Dz ¼ D⊥ ¼ 1, J ⊥ ¼ K⊥ ¼ 1,
J z ¼ 1þ Kz, and Kz ¼ 1 − Kz. Symbols display data for a
sample with L ¼ 64 unit cells, plotted for a variety of values of
Kz. The inset shows the perfect agreement between QMC data
(symbols) and exact diagonalization results (lines) for L ¼ 6.
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We have performed a high-precision QMC test of this
prediction using a finite-size scaling analysis for samples
with up to N ¼ 2L2 ¼ 2048 spins 1=2, both for the fully
frustrated special case and in the presence of nonzero K⊥
(previous quantum simulations were limited to K⊥ ¼ 0 and
N ¼ 20). Our determination of the critical value of the
Binder cumulant of the staggered magnetization provides
clear evidence that this transition indeed belongs to the 2d
Ising universality class both for K⊥ ¼ 0 and for nonzero
K⊥ (albeit with stronger finite-size effects in this case).
Indeed, our QMC data for the specific heat and the Binder
cumulant close to the phase transition (Fig. 3) are almost
identical to those of the classical 2d Ising model when
K⊥ ¼ 0 but deviate from the classical results outside the
critical region, underscoring the nontrivial nature of this
correspondence. These deviations become much more
significant for nonzero K⊥. Our method thus enables an
investigation of the full parameter regime, including where
the hard-square mapping breaks down, both in the fully
frustrated special case and when K⊥ ≠ 0 (the effect of
Kz ≠ 0 can also be studied).
Discussion.—Clearly, the method presented here can be

applied to a large class of frustrated magnets [60,63–67]
and models closely related to specific strongly correlated
materials: For instance, a generalized version of Hmixed has
been argued to be a good model for the mineral azurite
Cu3ðCO3Þ2ðOHÞ2 [47], and the specific heat of the
fully frustrated ladder [56] has similar features with the
Shastry-Sutherland compound SrCu2ðBO3Þ2 [55]. This
QMCmethod also enables the search for finite-T signatures
of multitriplet bond states, as shown in Ref. [55].
Additionally, it offers the possibility of using large-scale
unbiased simulations to study interesting quantum phase

transitions driven by the competition between different
exchange interactions. As we illustrated, a magnetic field
(in the z direction) can also be included, thus allowing one
to study magnetization processes and plateaux of such
frustrated magnets [41,44,52,54]. On the flip side, we note
that this QMC scheme does not remain sign-free when
J⊥, K⊥, and Kz are all nonzero in the general bilayer
Hamiltonian Hbilayer. The simple sequence of processes
shown in Fig. 4 for a single plaquette of a square lattice
provides an explicit illustration of this limitation.
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FIG. 3. QMC results (symbols) for Hbilayer in a field on the square lattice, with J z ¼ Kz ¼ 1, Dz ¼ D⊥ ¼ 5, J ⊥ ¼ 1þ K⊥,
K⊥ ¼ 1 − K⊥, and h ¼ 7. Left panel: Specific heat Cv for K⊥ ¼ 0 (inset zooms into the critical range). Right panels: Binder cumulant
U ¼ hm4

si=hm2
si2 of the staggered magnetizationms ¼

P
rð−ÞrðSzIr þ SzIIrÞ. The critical temperature Tc, estimated by the crossing point

ofU, decreases withK⊥.U at the estimated Tc tends to the 2d Ising critical valueU� ¼ 1.16793 [62] at large L for allK⊥ displayed. The
solid lines in the K⊥ > 0 panels are guides to the eye. At K⊥ ¼ 0, they denote results for the 2d classical Ising model at TIsing ¼ 4T.

FIG. 4. This operator string for a single plaquette of the Bravais
lattice of the bilayer system illustrates the origin of the sign
problem faced when simulating the general bilayer Hamiltonian
Hbilayer: Its weight is negative, independent of the signs of the
nonzero couplings J⊥, Kz, and K⊥.
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Nevertheless, this construction of negative-weight configu-
rations relies on the existence of loops in the underlying
bipartite Bravais lattice and leaves open the possibility that
this sign problem could be controlled in 1d systems with
open boundaries. In summary, our work has led to a
solution of the sign problem for a large and interesting
class of frustrated quantum magnets. Given the ubiquity of
the sign problem in computational physics, we hope that
the strategy outlined in this work can be adapted to other
systems.
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