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We study the properties of edge plasmons in two-component electron liquids in the presence of
pseudomagnetic fields, which have opposite signs for the two different electronic populations and therefore
preserve the time-reversal symmetry. The physical realizations of such systems are many.We discuss the case
of strained graphene, solving the problem with the Wiener-Hopf technique. We show (i) that two charged
counterpropagating acoustic edge modes exist at the boundary and (ii) that, in the limit of large
pseudomagnetic fields, each of them involves oscillations of only one of the two electronic components.
We suggest that the edge pseudomagnetoplasmons of graphene can be used to selectively address the electrons
of one specific valley, a feature relevant for the emerging field of valleytronics. Our solution highlights new
featuresmissing in previous (similar) results obtainedwith uncontrolled approximations, namely a logarithmic
divergence of the plasmon velocity, and the absence of gapped edge modes inside the bulk-plasmon gap.
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Introduction.—Nanoplasmonics, [1] which aims at com-
pressing electromagnetic radiation to subwavelength scales
by coupling it to matter waves, has recently experienced a
strong revival [2–4] with the discovery of two-dimensional
(2D) materials [5–15]. Atomically thin layers of van der
Waals solids exhibit many remarkable and intriguing
properties [11–13,16]; they allow to confine the radiation
at a surface, coupling it with mobile electrons and forming
surface-plasmon polaritons [2,15,17,18]. In this respect,
graphene has attracted a lot of interest, especially for its
record-high plasmon lifetimes [14,15]: plasmon losses have
indeed represented so far the fundamental bottleneck for
nanoplasmonic applications [19].
When a perpendicular magnetic field is applied to a 2D

charged liquid, edge collective modes arise [20–22]. These
“edge magnetoplasmons” have a linear low-energy
dispersion and are decoupled from the (gapped) bulk
modes [22]. Such modes are long lived thanks to the
strong confinement at the edge and their quasi one
dimensionality [23]. Fetter [20] calculated their dispersion
in a two-dimensional electron gas (2DEG), even though its
analytical solution exploited an uncontrolled approxima-
tion. Later he solved the same problem in the presence of
nearby grounded metal plates by numerical methods [24].
Notably, edge magnetoplasmons can propagate in both
directions along the edge; i.e., they are not chiral in a strict
sense. However, chirality is still present since the “wrong-
direction” plasmon is gapped, and its gap frequency
increases with the magnetic field [20].
In many systems, electrons experience pseudomagnetic

fields, whose main characteristic is to preserve the global
time-reversal symmetry. This happens, e.g., in strained
graphene [25–27]. Strain, modifying hopping parameters,

enters the low-energy Hamiltonian as a vector potential
Aðr; tÞ. The global time-reversal invariance is assured by
the fact that A has opposite signs on the two inequivalent
valleys (K and K0) of the Brillouin zone. In spite of this,
Landau quantization has been observed in strained samples
and the effective magnetic field has been shown to reach
values of hundreds of Tesla [28].
Naively, when doping is sufficiently high and intervalley

scattering is neglected, one would expect the electrons of
each valley to behave as a 2DEG subject to an effective
magnetic field [Fig. 1(a)]. Each valley should exhibit two
edge plasmons, one of which is gapped [Fig. 1(b)], with the
direction of propagation of the acoustic plasmon

(a)

(b)

FIG. 1. (a) Schematic view of the theoretical model: the two
electronic components experience opposite pseudomagnetic
fields. Two counterpropagating plasmons appear at the edge of
the system, each of them mainly due to density oscillations in a
specific valley. (b) Dispersion of edge collective modes in units of
the cyclotron frequency ωc, as a function of the momentum q
measured in units of qc ¼ ðkFl2Þ−1 [l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=ðeBÞp
is the

magnetic length]. We set the filling factor ν ¼ 1 (vp ≃ 1.2vF).
Each electronic component, depending on the range of frequen-
cies explored, can support up to two charged collective modes,
one of which lives inside the gap of the particle-hole continuum
(shaded region).
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determined by the sign of the pseudomagnetic field in the
given valley. Therefore, at low frequency one expects two
counterpropagating edge magnetoplasmons to emerge,
each due to density oscillations of one of the two electronic
components. Unfortunately, the problem is not so simple:
even neglecting direct scattering between them, the two
valleys are always electrostatically coupled, and a density
fluctuation in one of them invariably influences the
electrons in the other. This fact makes the problem
completely nontrivial and, since one of the two valleys
is always off resonance (i.e., it experiences an effective
magnetic field with the wrong sign), it could, in principle,
destroy the collective modes. We find that the two counter-
propagating acoustic edge plasmons survive, but that the
valleys are not completely disentangled. Each collective
mode stems indeed from the superposition of density
oscillations in both valleys, and becomes “localized” in
one of them only in the limit of large pseudomagnetic
fields. We stress again that high field values are actually
attainable in experiments.
In this Letter we solve the edge-plasmon problem in a

two-component 2D electronic system subject to a pseudo-
magnetic field. We solve the full Wiener-Hopf problem
[29] defined by constitutive equations and electrostatics,
and we provide a comparison with an approximate solution
obtained in a similar way as Fetter's one.
The model.—For the sake of definiteness we consider a

strained graphene sheet that occupies the half plane x < 0,
z ¼ 0. We assume that the edge does not affect the low-
energy physics of the system: electrons are described by the
massless Dirac Hamiltonian [11–13]

H0 ¼ vF
X
k;α;β

ψ̂†
k;αðkþ AÞ · σαβψ̂k;β; ð1Þ

where ψ̂†
k;α (ψ̂k;α) creates (destroys) a particle with momen-

tum k and pseudospin α, vF is the Fermi velocity,
Ax ¼ ξβðuxx − uyyÞ=a, and Ay ¼ −2ξβuxy=a are the two
components of the pseudomagnetic vector potential gen-
erated by the strain tensor uijðrÞ [here β ¼ −∂ lnðtÞ=
∂ lnðaÞ≃ 2, a ¼ 1.4 Å, and ξ is a numerical constant of
order 1] [25–27]. We assume the strain field to be such that
the pseudomagnetic field ∇ × A ¼ �Bẑ is constant. The
plus (minus) sign applies to electrons in valley K (K0). Even
though the strain field must have a trigonal symmetry to
induce a constant B [25–27], we regard the edge as a
straight line, assuming that its curvature is small. We
neglect intervalley scattering, assume graphene to be in
the Fermi-liquid regime [22], and describe the electronic
transport by linearized hydrodynamic equations [30–32].
The electron densities in the two valleys satisfy separate
continuity equations, i.e.,

∂tδnK þ n0∇ · vK ¼ 0;

∂tδnK0 þ n0∇ · vK0 ¼ 0; ð2Þ

where δnK (δnK0 ) is the nonequilibrium density fluctuation
in valley K (K0), while n0 is its equilibrium value. Hereafter
we suppress space and time indices for brevity. The
electron velocities vK and vK0 obey the Navier-Stokes
equations [22,33]

∂tvK þ ωcẑ × vK þ s2

n0
∇δnK −

e
m
∇ϕ ¼ 0;

∂tvK0 − ωcẑ × vK0 þ s2

n0
∇δnK0 −

e
m
∇ϕ ¼ 0; ð3Þ

where m ¼ ℏkF=vF is the cyclotron mass (kF is the Fermi
momentum), ωc ¼ eB=ðmcÞ is the classical cyclotron
frequency, and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−1∂P=∂np

¼ vF=
ffiffiffi
2

p
[22]. Finally,

the electrostatic potential is given by

ϕðrÞ ¼ e
Z

d2r0
δnKðr0Þ þ δnK0 ðr0Þ

jr − r0j : ð4Þ

Since the translational invariance along the ŷ direction is
not broken, all functions have a dependence of the form
e−iðωt−qyÞ. Equations (2)–(4) constitute a system of inte-
grodifferential equations that can be solved using the
Wiener-Hopf technique [29]. We calculate the sound
velocity of the two counterpropagating edge pseudomag-
netoplasmons. Furthermore, we show that in the limit
B → ∞ the two valleys decouple and each collective mode
is due to density oscillations of only one of them.
Fetter [20] simplified the problem by introducing an

approximation of Eq. (4), replacing it with

∂2
xϕðxÞ − 2q2ϕðxÞ ¼ 4πejqj½δnKðxÞ þ δnK0 ðxÞ�: ð5Þ

The big advantage of Eq. (5) is that, while leaving intact the
first two moments of the interaction potential integrated
across the edge, it allows us to study a system of ordinary
linear differential equations. However, effects that depend
on the long range of the interaction along the edge are in
this way lost. Note indeed that the asymptotic behavior of
Eq. (5) in the limit q → 0 is completely different from that
of the Fourier transform of Eq. (4). Below, we compare our
exact results with those obtained with the approximation
(5). We stress that the solution obtained with the Wiener-
Hopf method is not just an incremental improvement of
Fetter’s result, but reveals features missing in the approxi-
mate result: namely, (i) the logarithmic divergence of the
plasmon velocity at small momenta due to the long-range
nature of the Coulomb interaction [21], and (ii) the absence
of gapped modes with energy below ℏωc. Details of the
calculation in the approximate model, which closely
parallels Fetter’s derivation [20], are given in the
Supplemental Material [34].
The Wiener-Hopf solution.—To solve the problem posed

by Eqs. (2)–(4), we first introduce nsumðdiffÞðxÞ≡
δnKðxÞ � δnK0 ðxÞ. The resulting equation for ndiffðxÞ is
independent of ϕðxÞ, and its solution reads
ndiffðxÞ ¼ n̄diffeκ−x, where κ− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s−2ðω2

c − ω2Þ
p

.
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n̄diff is a constant to be determined from the boundary
conditions. Plugging this solution back into Eqs. (2)–(4),
and taking their one-sided Fourier transform [29], we find

nsumðkÞ ¼
2en0
ms2 ðk2 þ q2ÞϕðkÞ þ ½ikþ q2

κ−

ω2
c

ω2�Ξ̄
k2 þ κ2−

; ð6aÞ

n̄diff ¼
q
κ−

ωc

ω
Ξ̄: ð6bÞ

Here we used the fact that vK;xð0Þ ¼ vK0;xð0Þ ¼ 0, and we
defined Ξ̄≡ nsumð0Þ − 2en0ϕð0Þ=ðms2Þ. We extend k to
the whole complex plane, denoting with the subscript “þ”
(“−”) functions analytic in the upper (lower) half. The
functions nsumðkÞ and ϕðkÞ in Eq. (6a) are, by construction,
analytic for ℑmðkÞ ≥ 0 [29]. We therefore rename ϕðkÞ →
ϕþðkÞ and nsumðkÞ → nþðkÞ. Analyticity requires the
numerator of Eq. (6a) to vanish for k ¼ iκ−: we use this
condition below to determine the plasmon dispersion.
Taking the double-sided Fourier transform of Eq. (4),
noting that the left-hand side is ϕþðkÞ þ ϕ−ðkÞ, and
combining it with Eq. (6a) we get

ðk2þ κ2−ÞGðkÞϕþðkÞþ ðk2þ κ2−Þϕ−ðkÞ ¼ 2πeΞ̄FðkÞ; ð7Þ

where GðkÞ≡ 1þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2

p
=ðk2 þ κ2−Þ, FðkÞ ¼ −½ikþ

q2ω2
c=ðκ−ω2Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2

p
, and α ¼ 2πe2n0=ðms2Þ.

Equation (7) can be solved with the Wiener-Hopf tech-
nique. Using a well-known theorem of complex analysis
[29], we rewrite GðkÞ ¼ GþðkÞ=G−ðkÞ, where (η → 0þ)

G�ðkÞ ¼ exp

�Z
∞∓iη

−∞∓iη

dz
2πi

lnGðzÞ
z − k

�
: ð8Þ

The functionGþðkÞ [G−ðkÞ] is analytic in the upper (lower)
half of the complex plane. Equation (7) then becomes

GþðkÞϕþðkÞ þ G−ðkÞϕ−ðkÞ ¼ 2πeΞ̄FðkÞ G−ðkÞ
k2 þ κ2−

: ð9Þ

The term on the right-hand side of Eq. (9) can be rewritten
as FðkÞG−ðkÞ=ðk2 þ κ2−Þ ¼ FþðkÞ þ F−ðkÞ [29], where
FþðkÞ [F−ðkÞ] is analytic in the upper (lower) half of
the complex plane, and reads

F�ðkÞ ¼ �
Z

∞∓iη

−∞∓iη

dz
2πi

FðzÞ
z − k

G−ðzÞ
z2 þ κ2−

: ð10Þ

Equation (9) now reads

GþðkÞϕþðkÞ − 2πeFþðkÞΞ̄ ¼ 2πeF−ðkÞΞ̄ − G−ðkÞϕ−ðkÞ:
ð11Þ

Since the left-hand side is analytic for ℑmðkÞ ≥ 0 and the
right-hand side is analytic for ℑmðkÞ ≤ 0, together they
define a function analytic in the whole complex plane.
Moreover, both sides of Eq. (11) vanish in the limit
jkj → ∞. Therefore [29] they must be separately equal
to 0, and ϕþðkÞ ¼ 2πeΞ̄FþðkÞ=GþðkÞ. Equation (6a) now
reads

nþðkÞ ¼
�
2αðk2 þ q2Þ FþðkÞ

GþðkÞ
þ ikþ q2

κ−

ω2
c

ω2

�
Ξ̄

k2 þ κ2−
:ð12Þ

Since nþðkÞ is, by definition, analytic for ℑmðkÞ > 0, the
square brackets in Eq. (12) must vanish for k ¼ iκ− in order
to cancel the pole in the denominator. Performing the
integrals (8) and (10), setting ωpðqÞ ¼ vpq, and taking the
limit q → 0, from the square brackets in Eq. (12) we get
s2=v2p − 1 ¼ 2ᾱf=g, where

(a)

(b)

FIG. 2. (a) Sound velocity of the acoustic edge pseudomagne-
toplasmon vp ¼ ωpðqÞ=q in units of the Fermi velocity, plotted
as a function of the filling factor ν. The dots represent the Wiener-
Hopf result, while the dashed line is the approximate solution of
Eq. (14). We cut off the logarithmic divergence of vp by setting
q̄ ¼ 0.01. (b) Degree of valley polarization of the right-moving
edge pseudomagnetoplasmon, given by jδnK=n̄diff j ¼ ðvp þ sÞ=
ð2vpÞ and jδnK0=n̄diff j ¼ ðvp − sÞ=ð2vpÞ. Note that at large
magnetic field (ν ¼ 1), 80% of the contribution to density
oscillations comes from electrons in valley K, and only 20%
from those living around the K0 point. For the left-moving edge
plasmon an analogous figure can be drawn with valleys K and K0
interchanged.
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g ¼ exp

�
2ᾱ

π

Z
∞

0

dx
x2 þ 1

ðx2 − 1Þ2 þ 4ᾱ2x2
ln

�
1þ x
2

��
;

f ¼ 1

π
P
Z

∞

q̄

dy
yþ 1

�
s2

v2p
þ y

�
y−1

y2 − 1

× exp

�
−
2ᾱ

π

Z
∞

0

dx
ðx2 þ 1Þ lnðyþx

yþ1
Þ

ðx2 − 1Þ2 þ 4ᾱ2x2

�
: ð13Þ

Here q̄≡ sq=ωc and ᾱ≡ sα=ωc ¼
ffiffiffi
2

p
NFαeeðν − 1=2Þ,

where NF is the number of residual fermion flavors, αee ¼
e2=ðℏvFÞ the dimensionless coupling constant, and ν is the
filling factor. In the presence of unscreened electron-
electron interactions the integral on the second line is
infrared divergent in the limit q̄ → 0. The edge pseudo-
magnetoplasmon velocity therefore diverges as v2p →
−2s2ᾱ lnðᾱ q̄Þ=π (when ᾱ ≪ 1) [35]. From this we extract
the length scale λ≡ ᾱs=ωc ¼ 2πe2n0=ðmω2

cÞ, which is the
typical size of the boundary layer [21]. Solving the problem
in a similar way as Fetter's magnetoplasmon [34], i.e.,
replacing Eq. (4) with Eq. (5), we find

vp;approx ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2

p 2πe2n0
msωc

s
: ð14Þ

A comparison between vp and the approximate result of
Eq. (14) is given in Fig. 2(a). In this plot we set q̄ ¼ 0.01.
Since the problem is symmetric for q → −q, at any given

frequency two counterpropagating plasmons can be
excited. Once a plasmon is excited, the two electronic
components oscillate with opposite phases [34]. Therefore
jndiff j > jnsumj. Hence, to display the degree of valley
polarization we consider jδnK=ndiff j and jδnK0=ndiff j. For
weak pseudomagnetic fields the two are identical, and both
valleys oscillate simultaneously. However, in the limit
B → ∞ one of the them is completely “frozen” and
oscillations involve only the other valley. In this case,
e.g., jδnK=ndiff j≃ 1 and jδnK0=ndiff j≃ 0. We derive an
explicit expression for these two quantities. First, when
ω ¼ ωpðqÞ, n̄diff ¼ sΞ̄=vp [see Eq. (6b)]. The value of
nsumðx ¼ 0Þ is obtained by taking the Fourier transform of
Eq. (12) in the limit x → 0− [34]. The resulting expressions
are fairly simple, but their numerical evaluation turns out to
be quite challenging. We therefore resort to the approxi-
mate model, which gives nsumð0Þ ¼ s2Ξ̄=v2p, in very good
agreement with the result obtained by the Wiener-Hopf
technique (when vp is calculated with this method). Using
the approximate expression, jδnK=ndiff j ¼ ðvp þ sÞ=ð2vpÞ
and jδnK0=n̄diff j ¼ ðvp − sÞ=ð2vpÞ. In Fig. 2(b) we plot the
two functions for the right-propagating mode. At ν ¼ 1
80% (20%) of the contribution comes from electrons of
valley K (K0).
It is also possible to show that no other mode lives inside

the bulk-plasmon gap. Such a mode should have a

zero-momentum frequency smaller than ωc. The plasmon
equation for gapped modes is obtained as before by
considering the term in the square brackets in Eq. (12)
and setting k ¼ iκ− and ω ¼ ωcΔ, with 0 < Δ < 1. In the
limit q → 0 the resulting equations are identical to those
obtained before, when these are evaluated in the limit vp →

∞ and ᾱ ¼ sα=ðωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

p
Þ. The plasmon equation is

therefore a function of only ᾱ, and has no solution unless
ᾱ → ∞ (i.e., for Δ ¼ 1). Therefore the gapped mode has a
minimum energy equal to ℏωc.
Finally, intervalley scattering introduces a mechanism of

nonconservation of the valley density. Equations (2) are
therefore amended by adding the terms ðδnK − δnK0 Þ=τI
with opposite signs in the two equations. Extending the
Wiener-Hopf calculation in the presence of the intervalley
scattering we find that, in the limit of τ−1I ≪ cq, the
pseudomagnetoplasmon dispersion becomes ωpðqÞ ¼
vpqþ i=ð2τIÞ [34].
Conclusions.—In this Letter we have discussed the

problem of collective modes confined at the boundaries
of a two-component 2D system subject to a pseudomag-
netic field that preserves the time-reversal symmetry
[25–27,36,37]. This property is ensured by the fact that
it has opposite signs for the two different electron pop-
ulations. We have shown that (i) two counterpropagating
acoustic plasmons live at the edge of the system, and that
(ii) in the limit of large pseudomagnetic field the excited
plasmon involves only density oscillations of one of the
two electronic components, while the other is frozen.
In graphene, edge modes induced by shear strain

deformations [25–27] are valley polarized. They can there-
fore be used to selectively excite electrons in one of the two
valleys by, e.g., optical means, by carefully choosing the
energy and wave vector of the imparted external perturba-
tion. This fact, similar to the valley-selective circular
dichroism of transition metal dichalcogenides [38], has a
direct impact on the emerging field of valleytronics
[38–40]. Furthermore, since the edge-plasmon velocity
depends on the strain field, it is possible to draw an
analogy with the propagation of light in media with
different refractive indexes, and imagine inducing focusing,
antifocusing, and interference between collective modes by
means of a properly chosen strain pattern [25–28].
Our edge pseudomagnetoplasmons are conceptually

different from the edge “Berry plasmons” recently intro-
duced in Ref. [41]. The latter are driven by a pseudomag-
netic field in momentum space (Berry curvature) whereas
our valley-selective pseudomagnetic field acts in real space,
therefore opening a gap in the spectrum of the modes
propagating in the wrong direction. No such gap is present
in the spectrum of Berry plasmons.
Being unidirectional as well as valley polarized (in the

large-strain limit), edge plasmons are expected to be long-
lived excitations only weakly affected by smooth charge
inhomogeneities. Once launched by, e.g., an s-SNOM setup
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[17,18,42] or fast electric pulses applied to an electrode
[23,43], they can be detected in real-time measurements far
away from the injection point [23,43]. Furthermore, the
combination of a real magnetic field with strain creates an
asymmetry in the velocity of the two counterpropagating
plasmons. The observed difference between plasmon
velocities in opposite directions can be compared with
theoretical predictions to reveal the valley-polarized nature
of pseudomagnetoplasmons. Finally, edge pseudomagne-
toplasmons in graphene nanodisk arrays can be revealed in
IR-THz optical absorption measurements from the splitting
of the low-energy peak in the presence of both strain and
magnetic field [44].
A more exotic testing ground for these ideas is given by

electrons traveling in a Skyrmion lattice [36,37]. The
complex, topological magnetic structure of the
Skyrmions is responsible for the emergence of an “effective
electrodynamics,” under which electrons experience a spin-
dependent pseudomagnetic field similar to the one
described in this Letter, with the spin index replacing
the valley index. In this case, our theory predicts the
existence of counterpropagating spin-polarized acoustic
plasmons, which could be exploited for spintronics appli-
cations [45–47]. The anomalous Hall effect arising from the
net magnetic moment of the Skyrmion is expected to be a
minor correction to the main effect.
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