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Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically
modify spin transport dynamics and give rise to robust collective effects including global demagnetization,
macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework
for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the
trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions.
The key idea is the projection of the state of the system onto a set of lattice spin models defined on the
single-particle mode space. Collective phenomena, including the global spreading of quantum correlations
in real space, arise as a consequence of the long-ranged character of the spin model couplings. This
approach achieves good agreement with prior measurements and suggests a number of directions for
future experiments.
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The interplay between spin and motional degrees of
freedom in interacting electron systems has been a long-
standing research topic in condensed matter physics.
Interactions can modify the behavior of individual electrons
and give rise to emergent collective phenomena such as
superconductivity and colossal magnetoresistance [1].
Theoretical understanding of nonequilibrium dynamics in
interacting fermionic matter is limited, however, and many
open questions remain. Ultracold atomic Fermi gases, with
precisely controllable parameters, offer an outstanding
opportunity to investigate the emergence of collective
behavior in out-of-equilibrium settings.
Progress in this direction has been made in recent experi-

ments with ultracold spin-1=2 fermionic vapors, where
initially spin-polarized gases were subjected to a spin-
dependent trapping potential (Fig. 1) implemented by a
magnetic field gradient [2–4], or a spin-dependent harmonic
trapping frequency [5–8]—equivalent to a spatially varying
gradient. Even in the weakly interacting regime, drastic
modifications of the single-particle dynamics were reported.
Moreover, despite the local character of the interactions,
collective phenomena were observed, including demagneti-
zation and transverse spin-waves in the former, and a time-
dependent separation (segregation) of the spin densities and
spin self-rephasing in the latter. Although mean-field and
kinetic theory formulations have explained some of these
phenomena [8–18], a theory capable of describing all the
time scales and the interplay between spin, motion, and
interactions has not been developed.
In this Letter, we develop a framework that accounts for

the coupling of spin and motion in weakly interacting Fermi
gases.We qualitatively reproduce and explain all phenomena
of the aforementioned experiments and obtain quantitative

agreement with the results of Ref. [7]. In this formulation,
the state of the system is represented as a superposition
of spin configurations which live on lattices whose sites
correspond to modes of the underlying single-particle
system.Within each configuration, thedynamics is described
by a spinmodel with long-ranged couplings which generates
collective quantum correlations and entanglement. Each
sector evolves independently, and the accumulated phase
differences between sectors capture the interplay of spin and
motion [Fig. 1(b)]. Using this formulation, we gain a great
deal of insight about the dynamics and can extract analytic
solutions for spin observables and correlations in several
limits. Although spin models in energy space [19–25] have
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FIG. 1. (a) Atoms spin-polarized along X occupy single-
particle eigenstates, labeled by mode number n. The potential
is quenched to a spin-dependent form, and dynamics result from a
spin model with long ranged interactions (green wavy lines) in
energy space. (b) The state jψi is a coherent superposition of
spins in many mode configurations (unoccupied modes are
represented by open circles). In each configuration, particles
are localized in mode space, with spin model Hamiltonian Ĥsm

i .
Coherences between the configurations capture motional effects.
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been used before and agreed well with experiments
[5,23,26–30], their use was limited to pure spin dynamics
(no motion). Our formulation allows us to track motional
degrees of freedom, compute local observables, and deter-
mine how correlations spread in real space. This opens a
route for investigations of generic interacting spin-motion
coupled systems beyond current capabilities. Our predictions
also suggest directions for future experiments in the weakly
interacting regime, which might, for instance, investigate the
collective rise of quantumcorrelations. In contrast to strongly
coupled ultracold gases, where motion is quickly suppressed
and features of the dynamics tend to be universal [2,31,32], in
the weakly interacting regime, spin, motion, and interactions
are all important and must be treated on the same level.
A wide variety of analytical and numerical tools have

been developed for lattice quantum spin models [33–40],
making a spin model description of fermions potentially
very useful. To demonstrate the capabilities of this
approach, we use time-dependent matrix product state
methods which are efficient in one dimension [41].
Setup.—We consider N identical fermionic atoms of

mass ma with a spin-1=2 degree of freedom α ∈ f↑;↓g
trapped in a one dimensional harmonic oscillator of
frequency ω, V0ðxÞ ¼ 1

2
maω

2x2. The gas begins spin
polarized in the ↓ state and atoms populate distinct trap
modes. The initial Hamiltonian is Ĥ ¼ Ĥsp

0 þ Ĥint where

Ĥsp
0 ¼

X

α

Z
dxψ̂†

αðxÞ
�
−

1

2ma

∂2

∂x2 þ V0ðxÞ
�
ψ̂αðxÞ;

Ĥint ¼ 2as
maa2⊥

Z
dxρ̂↑ðxÞρ̂↓ðxÞ:

ψ̂αðxÞ is the fermionic field operator for spin α at point x, as
is the s-wave scattering length, ρ̂αðxÞ ¼ ψ̂†

αðxÞψ̂αðxÞ,
ℏ ¼ 1, and we have integrated over two transverse
directions with a small confinement length a⊥ ≪ aH, with
aH ¼ ðmaωÞ−1

2. Note that the initial spin-polarized sample
will not experience interactions. A resonant π=2 pulse
collectively rotates the spin to the X axis, and a magnetic
field gradient is suddenly turned on. This introduces a
sudden change (quench) in the single-particle Hamiltonian
Ĥsp

0 , which becomes spin dependent, Ĥsp, where

Ĥsp ¼
X

α

Z
dxψ̂†

αðxÞ
�
−

1

2ma

∂2

∂x2 þ VαðxÞ
�
ψ̂αðxÞ:

This quench protocol is illustrated in Fig. 1(a). The spin
dependence of the trapping potential Vα¼↑;↓ðxÞ creates an
inhomogeneity between the spin species, allowing con-
tact s-wave collisions to occur. Expanding the field
operators in the basis of single-particle eigenstates
ϕα
nðxÞ with associated creation operator ĉ†nα and defining

the interaction parameter u↑↓ ¼ 2as=ðmaaHa2⊥Þ, Ĥint

becomes u↑↓
P

nmpqAnmpqĉ
†
n↑ĉm↑ĉ

†
p↓ĉq↓, where Anmpq ¼

aH
R
dxϕ↑

nðxÞϕ↑
mðxÞϕ↓

pðxÞϕ↓
qðxÞ.

To model two classes of experiments [2–4] and [5–8],
we consider spin-dependent potentials of the form
Vα¼↑;↓ðxÞ ¼ V0ðxÞ þ ΔVαðxÞ, with ΔVαðxÞ generated by
a magnetic field with a constant gradient, ΔVαðxÞ ¼ �Bx,
or a linear gradient, ΔVαðxÞ ¼ �maω

2
Bx

2=2. In both cases
Ĥsp can be written as

Ĥsp ¼
X

n

½ωðnþ 1=2ÞN̂n þ Δωðnþ 1=2Þσ̂Zn �;

with N̂n ¼ ĉ†n↑ĉn↑ þ ĉ†n↓ĉn↓, and fσ̂Xn ; σ̂Yn ; σ̂Zng≡P
α;βĉ

†
nα~σαβĉnβ where ~σ is a vector of Pauli matrices.

The constant gradient shifts the trap for spin-up (-down)
by x0 (−x0), with x0 ¼ ðB=maω

2Þ, but does not change the
frequency; ω ¼ ω and Δω ¼ 0. In a noninteracting gas,
the ↓ and ↑ densities and the magnetization oscillate at
frequency ω due to this motion [16,49]. A linear gradient
adds an additional harmonic potential term resulting in
different trap frequencies for the two spins: ω ¼ ðω↑ þ
ω↓Þ=2 and Δω ¼ ðω↑ − ω↓Þ=2. The noninteracting spin
densities undergo a breathing motion in their respective
traps, leading to oscillations in the total magnetization [49].
A finite Δω causes dephasing through rotations of the
magnetization in the XY plane with mode-dependent rates.
The generalized spin model approximation.—The

quench of the trapping potential to a spin-dependent
form projects the initially polarized state, which we take
to be the ground state in this work, onto the eigenmode
basis of Ĥsp [50]. The resulting state jψit¼0 is a coherent
superposition of many product states, each characterized
by a set of populated modes ni ¼ fni

1;n
i
2;…;ni

Ng:
jψit¼0 ¼

P
idi

Q
N
j¼1 ĉ

†
ni
jσj
j0i. The coefficients di are deter-

mined by the change of basis associated with the eigen-
states of V0ðxÞ and Vα¼↑;↓ðxÞ.
Our key approximation is that single particle modes

either remain the same or are exchanged between two
colliding atoms. Exact numerical calculations confirm the
validity of this approximation in the weakly interacting
regime [44]. For each set ni, the resulting total Hamiltonian
takes the form of an XXZ spin model

Ĥsm
ni ¼ Ĥsp

ni −
u↑↓
4

X

n≠m∈ni

X

ν¼X;Y;Z

Jνnmσ̂νnσ̂νm; ð1Þ

plus additional small density-σ̂Z couplings [44]. Here,
the Ising, JZnm ≡ Annmm, and exchange, JXnm ¼ JYnm ¼
J⊥nm ≡ Anmmn, couplings result from the overlap between
the ↑ and ↓ single-particle eigenstates and are long-ranged
(∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn −mjp
) in each direction ðx; y; zÞ [44]. In this

approximation, each sector ni evolves independently,
but with ni-dependent parameters, under Eq. (1). When
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computing observables, we account for both the interac-
tion-driven spin dynamics within each ni sector, as well as
the single particle dynamics determined from the coher-
ences between sectors.
Spin observables.—The local and collective magnetiza-

tions are given by ~̂SðxÞ ¼ 1
2

P
nm;α;βϕ

α
nðxÞϕβ

mðxÞðĉ†αn ~σαβĉ
β
mÞ

and ~̂S ¼ R
dx~̂SðxÞ. Figure 2 summarizes the results for a

constant gradient with N ¼ 10 [51]. At short times, the
collective magnetization hŜXi [Figs. 2(a) and 2(e)] exhibits
characteristic single-particle oscillations at frequency ω;
these quickly dephase and are modulated by a global
envelope with a longer time scale. Similar behavior is
observed for the local magnetizations hŜX;Y;ZðxÞi
[Figs. 2(b)–2(d) and 2(f)–2(h)]. Although the total
hŜY;Zi magnetizations are zero at all times, the local
quantities hŜY;ZðxÞi evolve due to coherences between
mode configurations. Their dynamics, however, are
damped by interactions.
The dynamics can be understood as follows. For spin

independent potentials, JZnm ¼ J⊥nm and Δω ¼ 0. The
Hamiltonian Ĥsm

ni is SU(2) symmetric and commutes with

~̂S
2
, where ~̂S≡ 1

2

P
n ~̂σn, and so, its eigenstates can be

labeled by the total spin S. When a gradient is applied,
the SU(2) symmetry is broken by terms Δnm ¼ JZnm − J⊥nm
(Δω ¼ 0 for a constant gradient), and the Hamiltonian can
be rewritten as ĤS

ni þ Ĥδ
ni , where

ĤS
ni ¼ Eni −

u↑↓
4

X

n≠m∈ni

½J⊥nm~σn · ~σm þ Δσ̂Zn σ̂Zm�;

Ĥδ
ni ¼ −

u↑↓
4

X

n≠m∈ni

δnmσ̂
Z
n σ̂

Z
m; ð2Þ

Eni ¼ ω
P

n∈niðnþ 1=2Þ is a constant, Δ is the average

value of Δnm, and δnm ¼ Δnm − Δ. ĤS
ni commutes with ~̂S

2
,

so only Ĥδ
ni induces transitions between manifolds of

different S. For a sufficiently weak gradient, and
δnm ≪ J⊥nm, a large energy gap G, which we call the
Dicke gap, opens between the S ¼ N=2 “Dicke” manifold
and the S ¼ ðN=2 − 1Þ “spin-wave” manifold [44]. The
state of the system begins in the Dicke manifold, and it
remains there when terms in Ĥδ

ni are small compared to this
gap [52]. Dynamics resulting from the collective Ising term
in ĤS

ni is given by hŜXini ¼ N
2
cosN−1 ðu↑↓ΔtÞ, and

hŜY;Zini ¼ 0. Since the interaction parameters JZnm and
J⊥nm vary slowly with the parameter index, the dynamics
of hŜXini is approximately the same for all i, and a single
configuration n0 ≡ f0; 1;…; N − 1g reproduces the
demagnetization envelope well [Fig. 2(a)].
For strong gradients, exchange processes are suppressed

and the effective interaction Hamiltonian becomes a generic

Ising model ĤIsing
ni ¼ −ðu↑↓=4Þ

P
n≠m∈niJZnmσ̂Zn σ̂Zm, which

also admits a simple expression for the spin magnetization
dynamics [37–40] hŜXini ¼ P

n∈ni

Q
m≠n∈ni cos ðu↑↓JZnmtÞ.

In this limit, the demagnetization envelope can be captured
by the n0 realization of the generic Ising solution [Fig. 2(e)].
Short time dynamics of an XXZ Hamiltonian [53] is

given by hŜXi ¼ hŜXit¼0ð1 − ðt=τMÞ2Þ þOðt3Þ, where we
define τM as the demagnetization time. By analyzing the
scaling of the interaction parameters, we find that
τM ∼ ðNu↑↓x20Þ−1, which agrees well the numerical scaling
∼u−1↑↓x

−2
0 N−0.823 [44]. Similar behavior was reported in

Ref. [2] in the weakly interacting regime [54].
Figure 3(a) shows the numerically obtained total

magnetization vs interactions for a weak linear gradient.
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FIG. 2. Magnetization dynamics for a constant gradient. Collective hŜXi for a x0 ¼ 0.1aH (a) [and x0 ¼ 0.3aH (e)] displays global
interaction-induced demagnetization, which damps single-particle oscillations. Collective [generic] Ising solutions, black lines, give the
demagnetization envelopes. Local magnetizations hŜX;Y;ZðxÞi with x0 ¼ 0.1aH (b)–(d) [and x0 ¼ 0.3aH (f)–(h)] reflect similar
behavior, both shown with u↑↓ ¼ 0.35ω.
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The magnetization remains nearly constant for sufficiently
strong interactions, and the collective spin dynamics is a
global precession in the XY plane (inset). This self-
rephasing effect was experimentally reported in Ref. [5],
and the spin model provides a simple interpretation. For a
system in a weak gradient, the single-particle term ∝ Δω is
the largest inhomogeneity. In this limit, the Hamiltonian
simplifies to −ðu↑↓=4Þ

P
n≠mJ

⊥
nm~σn ·~σmþ

P
nΔωðnþ1

2
Þσ̂Zn .

When ΔωNave
ni ≪ G, where G is the Dicke gap and Nave

ni is
the average mode occupation, most of the population
remains in the Dicke manifold. After projecting Ĥsp onto
the Dicke states, the dynamics is a collective precession
in the XY plane of the generalized Bloch vector, i.e.,

hŜ�ðtÞi ¼ hŜ�ð0Þie�2itðNave
ni

þ1
2
ÞΔω, with Ŝ� ¼ ŜX � iŜY .

Demagnetization is suppressed when interactions (∝ G)
dominate over the dephasing introduced by Δω. Under this
condition, a large fraction of the population stays in the
Dicke manifold.
Spin segregation in fermionic gases—a clear, spatial

separation of the spin densities, first reported in Ref. [7]—
occurs at time scales set by the mean interaction energy, and
reverses sign when interactions are switched from attractive
to repulsive. When ΔωN ≪ G, this effect can be under-
stood as the result of off-resonant Rabi oscillations between
the S ¼ N=2 Dicke states and the S ¼ ðN=2 − 1Þ spin-
wave states, which are coupled by the gradient, and whose
energies are separated by the Dicke gapG. If the gradient is
weak, one can ignore coherences developed between
mode sectors, and approximate ϕ↑

nðxÞ ≈ ϕ↓
nðxÞ ¼ ϕnðxÞ.

In this limit, the dynamics of the population difference
Δn ¼ n↑ðxÞ − n↓ðxÞ is approximately [44]

hΔni ¼ 2Δω
G

X

n∈ni

ϕnðxÞ2ðn − Nave
ni Þ½cos ðGtÞ − 1�: ð3Þ

The spin density changes sign when n > Nave
ni . Spin

segregation occurs as a result since high energy modes
on average occupy positions further from the origin than
low energy modes.

Now, we proceed to use the spin model framework to
model the segregation observed in Ref. [7]. Although
the measurements were done in the high temperature
regime, we first determine the role of single particle
motion by modeling a simpler 1D case at zero temperature
with the same effective parameters. This case can be treated
numerically with time-dependent matrix product states
methods, and Figs. 3(b) and 3(c) show the dynamics of
½n↑ðxÞ − n↓ðxÞ�=n0, where n0 ¼ ½n↑ð0Þ þ n↓ð0Þ�=2. Single
particle motion is negligible, and the dynamics is closely
approximated by Eq. (3). This information allows us to
model the actual three-dimensional experiment with a pure
spin model. At the high temperature of the experiment, the
Dicke gap significantly decreases; however, Eq. (3) remains
valid at short times when the majority of the population is
in the Dicke manifold. The segregation obtained from a
thermal average of Eq. (3) [44] well reproduces the
experiment as shown in Fig. 3(d). For this calculation,
the only free parameter is the asymptotic value of the
density imbalance [55]. The population difference saturates
due to dephasing associated with the thermal spread of the
G values.
Correlations.—Our approach can be used to compute

higher-order correlations, such as the Gþþðx; x0Þ ¼
hŜþðxÞŜþðx0Þi − hŜþðxÞihŜþðx0Þi correlator shown in
Fig. 4. Although the system is initially noninteracting,
Gþþðt ¼ 0Þ shows finite antibunching correlations near
x ∼ x0 arising from Fermi statistics (mode entanglement)
[56,57]. At later times, correlations behave collectively, a
distinct consequence of the long-range character of the spin
coupling parameters [58–62].
For a weak constant gradient, the collective Ising model

provides a good characterization of the correlation
dynamics. For each spin configuration Gþþ

ni ðx;x0;tÞ¼
fi1ðx;x0ÞcosN−2ð2u↑↓ΔtÞ−fi2ðx;x0Þcos2N−2ðu↑↓ΔtÞ, where
the functions fi1;2ðx; x0Þ depend on the set of populated
modes [44]. Gþþ peaks at the time when the system has
completely demagnetized [Fig. 4(a)]. For a pure spin
system with a collective Ising Hamiltonian, the state, at
this time, is a Schrödinger’s cat state [63,64]. For the linear

(a) (b) (c) (d)

FIG. 3. Dynamics for a linear gradient. (a) Spin self-rephasing for ωB ¼ 0.1ω: as interactions increase, demagnetization is suppressed

and h ~̂Si precesses collectively in the XY plane (inset). (b) Simulation of a one dimensional gas at zero temperature with parameters from
Ref. [7], showing ðn↑ − n↓Þ=n0 at the cloud center (blue solid line) with analytic prediction (red dashed line), and (c) segregated spin
density profiles. (d) Data from Ref. [7], and prediction (red dashed line) based on a thermal average of Rabi oscillations between the
Dicke and spin-wave manifolds.
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gradient in the self-rephasing regime, we observe collective
precession ofGþþ [Fig. 4(b)]. As interactions decrease or the
inhomogeneity increases, correlations are strongly affected
by the interplay between single-particle dynamics and
interactions. Mode entanglement tends to cause an almost
linear spreading of the correlations with time [65–67], while
interactions tend to globally distribute and damp those
correlations [44]. Current experiments are in position to
confirm these predictions.
Outlook.—We have discussed an approach to model the

interplay of motional and spin degrees of freedom in
weakly interacting fermionic systems in spin-dependent
potentials. Simulations reproduce several collective
dynamical phenomena that were recently observed in cold
gas experiments, and we can understand the physics
behind these effects with simple considerations. For larger
systems and in higher dimensions, methods such as the
discrete truncated Wigner approximation could be utilized
[34–36,68]. Our formulation may also be useful for
modeling other spin transport experiments [31,69].
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