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We investigate the extended hard-core Bose-Hubbard model on the triangular lattice as a function of
spatial anisotropy with respect to both hopping and nearest-neighbor interaction strength. At half-filling the
system can be tuned from decoupled one-dimensional chains to a two-dimensional solid phase with
alternating density order by adjusting the anisotropic coupling. At intermediate anisotropy, however,
frustration effects dominate and an incommensurate supersolid phase emerges, which is characterized by

incommensurate density order as well as an anisotropic superfluid density. We demonstrate that this
intermediate phase results from the proliferation of topological defects in the form of quantum bosonic
domain walls. Accordingly, the structure factor has peaks at wave vectors, which are linearly related to the
number of domain walls in a finite system in agreement with extensive quantum Monte Carlo simulations.
We discuss possible connections with the supersolid behavior in the high-temperature superconducting

striped phase.
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Ever since the observation of the superfluid-Mott tran-
sition in an optical atomic lattice [1], ultracold gases have
been considered as promising candidates for the controlled
quantum simulation of condensed matter systems with
interesting many-body physics [2]. Even though theorists
are quite creative in inventing new models, experimental
progress is surprisingly quick to follow. Recently, frustrated
lattices [3] have been of broad interest due to the emergence
of new exotic phases, such as spin liquids [4-9], topologi-
cal excitations [10,11], and supersolids [12-23]. Frustrated
lattices with spatial anisotropy are in the center of attention
[24-44] since a frustrating interchain coupling allows one
to study the effects of both a changing dimensionality and a
tunable frustration.

A straightforward frustrated geometry is provided by
the triangular lattice, which is realized by various types
of materials, ranging from antiferromagnets such as
Ba;CoSb,0y [45-47] and Cs,CuCly_,Br, [28-30] to
organic salts [31-37]. For antiferromagnetic xy coupling
with spatial anisotropy there has been a controversial
discussion on a possible spin liquid phase [28—40] or an
incommensurate phase [42,43]. For hard-core bosons in
optical lattices the hopping parameter plays the role of a
ferromagnetic xy coupling. In this case, nearest neighbor
interacting bosons are realizable, for instance, with mag-
netic erbium atoms [48]. On the triangular lattice [49,50]
they have been predicted to show supersolid behavior
[12-21], which is characterized by two independent spon-
taneously broken symmetries—U(1) and translation—with
corresponding superfluid and density order. For an aniso-
tropic triangular lattice the commensurate supersolid phase
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is found to be unstable [26,27], and the solid order turns out
to be incommensurate [41].

Supersolid phases with two independently broken order
parameters were first discussed for solid He [51,52] and were
more recently shown to exist theoretically [12-21] and
experimentally [53,54] in optical lattices for ultracold gases.
Although high-temperature superconductors [55-57] are not
often mentioned in this context, the coexistence of super-
conductivity and antiferromagnetic density order, so-called
superstripes, are the defining characteristics of an incom-
mensurate supersolid. Remarkably, the analogous physical
phenomenon of incommensurate density order together with
a finite superfluid density can be observed in a simple hard-
core boson model. In the following we present a quantitative
analytical model for this behavior in terms of topological
defects in their simplest form, namely, an increasing number
of domain walls. Obviously, the microscopic model of
high-temperature superconductors is quite different, but
the detailed understanding of the underlying mechanism
via a spontaneous appearance of domain walls [55-57] is a
helpful unifying feature of these many-body phenomena.

In this Letter we analyze the quantum phase diagram of
hard-core bosons with anisotropic hopping z, # > 0 and nea-
rest neighbor interactions V, V/ > 0 on a triangular lattice,

H =" [~t(b[b; + Hc.) + V(n; = 1/2)(n; — 1/2)]
(i)
+ ) [=(bib; + He) + V/(n; — 1/2)(n; — 1/2)),
(i)

(1)
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FIG. 1.

(a) Configuration of the checkered solid phase when V' > V (inset: notation for hoppings and interactions); (b) Single bosonic

domain wall (red line) is excited for larger #. Kinks can fluctuate by particle hopping to new shape (green); (c) multidomain wall case;
(d) decoupled chain phase when V' < V, thick lines indicate strong interactions and order in the x direction; (e) structure factors of
phases with different numbers of domain walls (from left to right: N, = 0, 2, 4, 6, 8, 10, and 12) for lattice size L, = L, = 12 and pbc.
The first Brillouin zone is indicated by shading and the red box marks the commensurate supersolid (7 = 1).

where (i, j), and (i, j) , represent the nearest neighbor sites
on the horizontal bonds and the diagonal interchain bonds,
respectively, as shown in the inset of Fig. 1(a). According
to Eq. (1) we consider this model without additional
chemical potential, which corresponds to half-filling, where
the most interesting physics is expected to occur due to
particle-hole symmetry. The anisotropy parameter is denoted
by#n =t/ = V/V’ and the number of lattice sites in x and y
directions are assumed to be equal L = L, = L,, yielding
N =1L

In the strong-coupling limit # =7 = 0, the hard-core
boson model is equivalent to the Ising model on the
triangular lattice. For the isotropic case n# = 1, any state
which fulfills the constraint of one or two bosons per
triangle minimizes the energy. This leads to a finite zero-
temperature entropy of S/N = 0.323kg [58], whose degen-
eracy is reduced for any # # 1. When 5 < 1, the bosons
form a checkered order, which alternates in the interchain
direction as is shown in Fig. 1(a). This leads to distinct
peaks of the structure factor S(Q) = (| >N | n;e'@™|%)/N

at the wave vectors (+27,0) and (0,427/+/3), related
by a reciprocal lattice vector, as shown in the left panel of
Fig. 1(e). When 5 > 1, the particles form a density wave
alternating in the x direction with order at Q = (+, qy) on
each horizontal chain of the lattice according to Fig. 1(d)
and the right panel of Fig. 1(e). Here g, is arbitrary; i.e.,
there is no order in the y direction, since the energy does not
change when all particles in one chain move together. In
this case the ground-state entropy is proportional to the
number of chains L.

Finite hopping ¢ > 0 also removes the degeneracy, which
leads to a finite range of 1 # 1, where the ground state is
dominated by quantum fluctuations. For n =1 it is well
known that the system supports a commensurate supersolid
phase [12-21] at ordering wave vector Q = (+4x/3,0),

which is also stable in a range of nonzero chemical
potential, i.e., away from half-filling. Remarkably, the
supersolid can become incommensurate for n # 1 [41],
which will be described analytically in this work.

To this end we propose that an incommensurate supersolid
can be modeled by topological excitations of the checkered
ordered phase. In particular, the potential energy cost of
inserting a domain wall in the form of a phase shift as shown
inFig. 1(b)is givenby (V' = V)L, /2 = V'(1 = n)L,/2;i.e.,
it is proportional to the number of changed bonds in the
y direction. At the same time there is a gain in kinetic energy
since each kink can fluctuate via particle hopping at the
domain wall as indicated by red and green sites in Fig. 1(b).
In fact the left-right direction of the domain can be mapped
to spin states (up-down) and analyzing all possible cases of
hopping it turns out that the kinetic energy is described
exactly by two independent xy chains for each domain wall.
The xy chain in turn is exactly solvable, including correlation
functions, and the energy is known to be —2L ¢/ [10].
The effective energy for a finite density pp, = Np/L, of
domain walls is therefore given by

1-n 27
5 —W+f(ﬂb)- (2)

E(pD) = LxLyV/pD

Here the last term accounts for an effective repulsive
interaction energy between two neighboring domain walls
separated by a distance 1/pp. The yet unknown function
f(pp) must obey f(pp =0) =0 and will be determined
numerically below. Using the condition 9, E = 0 in order
to extremize the domain wall energy (2) yields a relation
between 7 and pp,
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The first pair of domain wall appears when it becomes
energetically favorable to spontaneously allow fluctuations.
This onset of the phase transition can be determined from
Eq. (3) with pp, = 0 and f = 0 resulting in a critical value
N1 = 1 —4¢/V'z, which agrees well with numerical sim-
ulations, see below. Note that additional domain walls at
equal distance will not immediately destroy the order
completely. Instead, each domain wall effectively removes
half of a spatial density oscillation in the finite system, so that
the positions of the structure factor peaks are shifted by
+7/L, for each domain wall in the system. This is the
microscopic origin of the observed incommensurable
order, with predicted wave vectors Q = z(£2 — pp,0)
and 7(4pp, +2/v/3) changing with p;,. At the same time
transport of bosons becomes possible along the domain walls
in the y direction, leading to a corresponding anisotropic
superfluid density which will be analyzed in more detail
below.

For the numerical results we implemented a quantum
Monte Carlo (QMC) code using the stochastic cluster series
expansion algorithm [59-61], which is further discussed in
the Supplemental Material [62]. Since the bosonic hopping
is positive, there is no kinetic frustration and the model does
not suffer from the minus sign problem. We use 5 x 103
thermalization steps and 10° measuring steps on lattices up
to length L = 24 with periodic boundary conditions (pbc)
in both directions. Since topological quantum numbers,
such as domain walls, are difficult to change with ordinary
QMC updates, we developed an extension of the parallel
tempering method [62,63]. All numerical data in Figs. 2
and 3 are plotted with error bars which are too small to be
distinguishable. The inverse temperature $ is measured
in units of the larger repulsive energy V., = max(V,V’).
The transition from the supersolid phase to a uniform
superfluid phase occurs at #/V'~0.11 [I12]. In our
simulations we therefore focus on the choice of
t/V =+ /V' = 0.08, which is in the center of the supersolid
phase we are interested in. Results for other values of #//V’
are discussed in the Supplemental Material [62].

In order to determine the domain wall density we define
the operator

L,V L‘(

S i) i 1y) T 1) Gy
Pp = Z Zl L.L, - @)
i,=1i= x

where 72 =1 — n. For hard core bosons n; ;i 1,,) +
(i 410) i) corresponds to 1 — 5,,([X‘i).>.,—,(ix+].i}_), SO pp
effectively counts the number of density changes along
the x direction. Note that domain walls have to be created in
pairs because of pbc, so that N, = pp L, should be an even
integer. The QMC results in Fig. 2 clearly show plateaus of
quantized domain wall numbers with discrete jumps as a
function of x. This is remarkable since the densities
fluctuate strongly in the QMC simulations, but the corre-
lation function in Eq. (4) yields robust discrete quantum
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FIG. 2. Bosonic domain wall density (4) as a function of
anisotropy parameter # for L = 24 with pbc at #/V’ = 0.08 and
PV =400 from QMC (dots) compared to the analytical
predictions from Egs. (5) (red) and (6) (black), respectively.
Inset: Finite-size scaling of the left and right points of the
commensurate supersolid plateau (p, = 2/3) with a second-
order polynomial fit.

numbers. The expected integer values are only slightly
renormalized by quantum fluctuations, which are further
suppressed for smaller #/V’ [62]. The phase transition
occurs at 7, ~ 0.89 for #//V' = 0.08 in good agreement
with the analysis above. The plateaus and the jumps
between them become more and more continuous for
increasing lengths. A finite-size scaling of the left and
right ends of the commensurate plateau at p, = 2/3 is
shown in the inset of Fig. 2, which clearly demonstrates that
a continuous function pp(7) is approached in the thermo-
dynamic limit. Also the jump to the first plateau and the
change in the superfluid order parameter vanishes in the
thermodynamic limit at the critical point 7., [62], which
is the hallmark of a second-order phase transition. The
interaction energy f(pp) can be analyzed from QMC
results with the help of Eq. (2), which yields a near perfect
agreement with a power-law behavior f(pp) o« p}, [62];
ie, a 1/distance* law. The proportionality constant
is fixed by imposing the condition pp(n=1)=2/3,
which together with Eq. (3) yields a prediction for the
behavior in the thermodynamic limit

oot =3 (1) " 2

This analytic result is shown as a red line in Fig. 2 with very
good agreement in the region of dilute domain walls, i.e.,
pp <2/3 and . <n < 1.

At full saturation pp, = 1, a second transition to the
decoupled chain phase occurs at 7.,. This phase has an
independent alternating density order in the ground state.
The basic excitation is again a domain wall, but this time
for each chain separately in the form of equal neighboring
densities n; ; = n; j,i, i.., a phase shift in the alternating
order along the x direction. Such a neighboring density pair
can be transported ballistically along the entire chain,
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which results in a large superfluid density along the x
direction and again a shift in the ordering wave vector.
A single pair has a potential energy cost of (V — V’)/2 and
gives a kinetic energy gain in the ¢, = 0 state of —2f,
resulting in a critical density of 7., = 1/(1 — 4¢'/V’). This
yields for #/V’' = 0.08 the value 7., ~ 1.47, in excellent
agreement with our numerical results. We can also define
the interaction energy between two neighboring density
pairs g(pp), and determine it along similar lines as above.
A fit to numerical results yields for g(pp) an exponential
decay [62] which gives a domain wall function

potn) =143 | 14wy (<5221 )

in the limit of a few density pairs, i.e., relatively close to
saturation 2/3 < pp < 1. Here, W_; represents the branch
—1 of the Lambert W function and is plotted in Fig. 2 as a
black line for #/V' = 0.08 and 1 <7 < 7.

Further evidence for the existence of domain walls
comes from the corresponding structure factor S(Q)/N,
which is shown in Fig. 1(e) at one parameter point for each
domain wall number. In the incommensurate supersolid
the peak positions shift with anisotropy, which reflects the
change from checkered order to independent chains. As
predicted by the domain wall theory, the peak positions are
directly related to the respective number of domain walls
[62]. All these observations strongly support the quantum
nature of domain walls, and rule out classical explanations
of incommensurate order, such as a continuous spiral
rotation of the spin [64].

In the supersolid phase both the translational symmetry
and the U(1) gauge symmetry are broken. Therefore, it is
also interesting to analyze the corresponding U(1) order
parameter, namely, the total superfluid density p, = p* + p3
and its components p!”) = W)ZCM /[4p1(1')], where W,
stands for the winding number in the x(y) direction [65].
According to Fig. 3, the total superfluid density p, behaves
opposite to the structure factor, which indicates that the two
order parameters are competing [17]. The total superfluid
density is reduced in both anisotropic limits and increases
for a decreasing anisotropy. In general, the superfluid
density is an anisotropic tensor [66,67], which in fact
reflects the properties of the domain walls presented above:
For n < 1 the superfluidity along the y direction dominates,
which is caused by hopping of domain wall kinks, incre-
asing with the number of domain walls. The maximum of
the total superfluid density occurs at # = 1, where fluctua-
tions in both directions are equally possible. For # > 1 the
superfluidity is caused by neighboring density pairs,
predominantly in the x direction. Interestingly, we observe
strong jumps in py at n = 1.25 and 7 = 1.1 corresponding
to the occurrence of the second and third density pair in a
finite system. This can only be explained by correlations of
the density pairs perpendicular to the chains, which signals
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FIG. 3. Total superfluid density p, = p* + p3, its value in the y

direction pj, and structure factor S(Q)/N at t/V = 0.08,
BV, = 400, and L = 24.

the buildup of domain walls discussed above forn < 1. The
jumps are a finite-size effect, however, so the behavior
becomes continuous in the thermodynamic limit.

In the context of superfluidity it is interesting to
remember that also in the striped phase of high-temperature
superconductors domain walls and superconductivity coex-
ist [55-57]. We have seen that in our bosonic model both
domain walls and neighboring density pairs naturally
emerge and cause superfluidity where the fluctuations
are largest. Even though the microscopic pairing mecha-
nism is more involved for superconductors, our results
suggest that it is related to the coherent motion of
neighboring domain walls and an effective reduction to
one dimension.

In summary, we analyzed the quantum phase diagram
of the extended anisotropic Bose-Hubbard model on the
triangular lattice. Because of frustration a nontrivial incom-
mensurate supersolid phase appears, which can be well
described analytically by topological defects in the form
of domain walls. For small # the domain walls along the
y direction are described by the exactly solvable xy-chain
model together with a 1/distance* interaction between
them. For large n an independent description in terms of
neighboring density pairs with an exponential interaction is
possible. The numerical results for the phase transition
lines, the domain wall density, the incommensurate order-
ing wave vectors, and the superfluid density agree with this
theory. In the low density region it will, in principle, be
possible to use a more detailed analysis of the xy model,
if higher-order correlation functions, finite temperature
behavior, or dynamical properties need to be calculated.
For larger domain wall densities a coherent pairing mecha-
nism causes a dominant superfluid density in the x
direction, which is due to the movement of neighboring
density pairs. This mechanism may be related to pairing in
the striped phases in high temperature superconductors,
where superconductivity coexists with incommensurate
order and domain walls.
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