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We propose a novel approach to the brane worldvolume theory based on the geometry of extended field
theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this
approach by showing that one can reproduce the conventional bosonic string and membrane actions, and
the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without
approximation looks different from the known M5-brane actions, but it is consistent with the known
nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions
for exotic branes are also discussed.
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Introduction.—String theory or M theory has a duality
symmetry when compactified on a torus. Recently, it has
become possible to formulate the effective supergravity
actions in a manifestly duality invariant manner due to the
developments in extended field theories, the double field
theory (DFT) [1–5] and the exceptional field theory (EFT)
[6–11]. These extended field theories can describe novel
geometries, such as nongeometric backgrounds that natu-
rally appear in string or M theory, and further interesting
geometries beyond the scope of the conventional super-
gravity are under investigation.
In worldvolume theories, duality covariant equations of

motion and duality invariant actions were developed in
Refs. [12–18] for a string, and in Refs. [9,19–27] for
M-theory branes. Specifically, the double sigma model
provides a T-duality invariant string action, and with which
we can study the string theory in various nontrivial back-
grounds (see Ref. [28] for an application). In contrast, a
similar formulation for M-theory branes that respects the
duality symmetries is still not well developed.
In this Letter, we propose a general construction of brane

actions that respects the geometry on extended spacetimes:
the doubled spacetime in DFT and the exceptional space-
time in EFT. Namely, we construct brane actions that are
invariant under the generalized diffeomorphisms in the
extended spacetimes and also a subgroup of the duality
symmetry, which we explain later. For that purpose, we
utilize the untwisting procedure developed in Refs. [29–31].
Our untwisting matrix consists of dynamical worldvolume
gauge fields, and they, together with the conventional
embedding functions Xi, describe the embedding into the
extended spacetime. A similar idea is proposed in Ref. [32],
where the effective action for a D-brane was formulated by
treating the scalar fields Xi and gauge fields Aa on an equal
footing. There, Xi and Aa describe the fluctuations in the
physical and the dual directions, respectively, and the
dynamics of aD-brane in the doubled spacetime is described

by the pair, (Xi, Aa). Our formulation extends their idea to a
worldvolume theory in an arbitrary extended spacetime.
Geometry on extended spacetimes.—Let us begin with a

brief explanation of the geometry on extended spacetimes
(see Ref. [30] for more details). We consider a certain
extended spacetime as the target space, which has the local
coordinates xI and the generalized metric MIJðxÞ. We
decompose xI into the coordinates xi on the physical d
torus and the dual coordinates yM supposing that all
fields and gauge parameters have only xi dependence. In
DFT and EFT, MIJ always has the factorized form,
MIJ ¼ M̂KLLK

ILL
J, and M̂KL is a block-diagonal matrix

including only the metric Gij on the physical d torus, while
LI

J consists of various (qþ 1)-form potentials in the
supergravity. For example, in doubled [2,12] and
E6ð6Þ-exceptional spacetime [33,34], xI and the set of
(qþ 1)-form potentials are given by

DFT∶ðxIÞ ¼ ðxi; ~xiÞ; fBijg;
EFT∶ ðxIÞ ¼ ðxi; yi1i2 ; yi1;…;i5Þ; fCi1i2i3 ; Ci1;…;i6g:

Note that a (qþ 1)-form potential exists for each dual
coordinate, with q totally antisymmetric indices. From
the perspective developed in Ref. [30], an extended space-
time is foliated by a family of physical d-torus, and, because
of the section condition in extended field theories, the
foliation is uniform in the orthogonal dual directions. The
shape of the foliation can be specified by a set of closed
(qþ 1)-form fields fcqþ1ðxÞg, which are also in one-to-one
correspondence with dual coordinates with q indices and
transform in the samemanner as the potentials fCqþ1g under
generalized diffeomorphisms [30]. A physical point in the
extended space can then be specified by the foliation
fcqþ1ðxÞg and coordinates xi on the physical d-torus.
Under a generalized diffeomorphism that maps the

“generalized point” ½xi; fcqþ1ðxÞg� into ½x0i; fc0qþ1ðx0Þg�,
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the transformation law of a generalized tensor TI1;…;Ir
J1;…;Js

ðxÞ
was found to be [30]

T 0I1;…;Ir
J1;…;Js

ðx0Þ ¼ SI1
K1

� � � ðS−1ÞL1
J1 � � �T

K1;…;Kr
L1;…;Ls

ðxÞ;
SI

J ≡ ðE0−1ÞIKðx0ÞRK
LEL

JðxÞ: ð1Þ
Here, we defined a matrix RI

J by replacing the matrix Gij

contained in M̂IJ with the Jacobian matrix, ∂x0i=∂xj, and
defined a matrix EI

J by replacing Cqþ1ðxÞ in LI
J with the

closed form, cqþ1ðxÞ.
Worldvolume theory.—Now we consider a p-brane with

the intrinsic metric γαβ and the local coordinates σα. If the
worldvolume Σ is on the physical d torus, its position is
parametrized only by the conventional embedding functions
XiðσÞ. In general, the p-brane can also fluctuate along the
dual directions, and the fluctuation along each dual direc-
tion, yi1;…;iq , can be parametrized by a locally closed-form
field on the worldvolume, Fqþ1ðσÞ ¼ dAqðσÞ [note that a
q-form AqðσÞ on the worldvolume vanishes for q>pþ1].
Under generalized diffeomorphisms, fFqþ1ðσÞg transforms
in the same manner as the pullback of fcqþ1ðxÞg for the
embedding map XiðσÞ. Note that Fqþ1ðσÞ is different from
the pullback of cqþ1ðxÞ; cqþ1ðxÞ specifies the embedding of
the physical d torus, while Fqþ1ðσÞ specifies that of the
p-brane.
We further introduce auxiliary 1-form fields PMðσÞ and

define the 1-form, ðPIÞ≡ ðdXi;PMÞ, that transforms as a
generalized vector. For example, ðPIÞ ¼ ðdXi;PiÞ in DFT
and ðPIÞ ¼ ðdXi;Pi1i2 ;Pi1;…;i5Þ in EFT. The fundamental
fields are summarized as follows:

fγαβðσÞ; XiðσÞ; AqðσÞ;PMðσÞg: ð2Þ
Our action for a single p-brane is given by

S ¼ 1

pþ 1

�
1

2

Z
Σ
MIJðXÞPI ∧ �PJ −

Z
Σ
Ωpþ1

�
: ð3Þ

The first term is manifestly invariant under duality trans-
formations and generalized diffeomorphisms. The second
term Ωpþ1 is roughly given by Ωpþ1 ∼ Pi1;…;ip ∧ dXi1;…;ip

with dXi1;…;ip ≡ dXi1 ∧ � � � ∧ dXip=
ffiffiffiffiffi
p!

p
. In order to

describe the fluctuation of the p-brane, we include
Fqþ1ðσÞ in the definition of Ωpþ1, such that Ωpþ1 becomes
invariant under generalized diffeomorphisms. If we
define the untwisted vector, P̂I ≡ LI

JPJ, it transforms
as P̂0I ¼ RI

JP̂
J under generalized diffeomorphisms [29].

Since fFqþ1ðσÞg transforms in the same manner as the

pullback of fCqþ1ðxÞg, if we define P̌I by replacing

Cqþ1 in P̂I with Fqþ1, it also transforms as

P̌0I ¼ RI
JP̌

J. Since P̌i1;…;ip transforms as P̌0
i1;…;ip ¼

Ri1;…;ip
j1;…;jpP̌j1;…;jp and dXj1;…;jp transforms as a

p-vector, dX0i1;…;ip ¼ ðR−1Þj1;…;jp
i1;…;ipdXj1;…;jp , Ωpþ1≡

P̌i1;…;ip∧dXi1;…;ip is invariant under generalized
diffeomorphisms.
Unlike the first term in the action that is invariant under the

whole duality symmetry, the second term is invariant only
under a subgroup. In fact, in order to meet the consistency
condition (i.e., section condition) of DFTor EFT, we suppose
that gauge parameters are independent of the dual coordi-
nates. Then, generalized diffeomorphisms reduce to the
gauge transformations of the supergravity, called the geo-
metric subgroup: i.e., diffeomorphisms on the torus and the
gauge transformations of the gauge potentials [35]. By
construction, the second term is invariant under the restricted
duality transformations contained in the geometric subgroup,
but not under the whole duality transformations. This is
reasonable since, under a generic transformation, ap-brane is
transformed to another brane and Ωpþ1 should be changed.
A consistent result was obtained in Refs. [20,26,27]; the

duality symmetry in a brane worldvolume theory is realized
as a symmetry that mixes the Bianchi identities and the
equations of motion [12,15,19,20], but, as was found in
Refs. [20,26,27], only the subgroup (i.e., the geometric
subgroup) of theU-duality symmetry is consistently realized
(classically). Specifically, in the case of the SL(5)U-duality
symmetry, the duality transformations are parametrized by
aij and bijk [i.e., global GL(4) transformations and constant
shifts in Cijk] together with cijk (the nongeometric Ω shift
[36]). Only the geometric subgroup satisfying cijk ¼ 0 was
shown to be the symmetry of the equations of motion [26],
and our action is also invariant only under the same subgroup.
There is also a more ambitious attempt to construct the

U-duality invariant action [22]. It is, however, quite
challenging since, for that purpose, we need to treat all
branes with different dimensionality on an equal footing.
String in doubled spacetime.—As the simplest applica-

tion of our formulation, let us consider a fundamental string
in a doubled spacetime. In the doubled spacetime, the
generalized metric is parametrized as

ðMIJÞ ¼
�
1 B

0 1

��
G 0

0 G−1

��
1 0

−B 1

�
; ð4Þ

and the 1-form fields are given by ðPIÞ ¼ ðdXi;PiÞ . The 2-
form Ω2 is then given by

Ω2 ¼ ðPi − FijdXjÞ ∧ dXi ¼ Pi ∧ dXi þ 2F2; ð5Þ
and the action becomes

S ¼
Z
Σ

�
1

4
MIJðXÞPI ∧ �PJ −

1

2
Pi ∧ dXi − F2

�
: ð6Þ

The equation of motion for Pi gives

Pi ¼ BijdXj þ Gij � dXj; ð7Þ
and, substituting this into the action, we obtain an equiv-
alent action of the well-known form
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S ¼ 1

2

Z
Σ
GijdXi ∧ �dXj þ

Z
Σ
B2 −

Z
∂Σ

A1; ð8Þ

where B2 ≡ ð1=2ÞBijdXi ∧ dXj and the world sheet is
supposed to have the boundary ∂Σ. Note that our action is
equivalent to the conventional sigma model action in
arbitrary curved backgrounds.
Let us compare our theory with the double sigma model.

Apart from the total-derivative term,
R
Σ F2, our action has a

similar structure to that of Hull’s double sigma model
[15,16] or a similar model by Lee and Park [18]. Indeed, if
we replace our PI with PI ≡ dXI þ CI , ðXIÞ≡ ðXi; ~XiÞ,
and ðCIÞ≡ ð0; CiÞ, the action (6) becomes Hull’s action, in
a version “doubled everything,”

S ¼
Z
Σ

�
1

4
MIJPI ∧ �PJ −

1

2
ðd ~Xi þ CiÞ ∧ dXi

�
: ð9Þ

Lee and Park’s action is also obtained by adding the total-
derivative term, ð1=2Þ RΣ d ~Xi ∧ dXi. If we consider a
constant background, our equation of motion for Xi gives
dPi ¼ 0 and we can find ~Xi as a solution of Pi ¼ d ~Xi.
However, in general backgrounds, we may not solve for ~Xi
and it will be a key difference of our approach from the
double sigmamodel. Furthermore, in our approach, because
of the introduction of F2 ¼ dA1—which parametrizes the
fluctuations of a string along the dual directions—the
boundary term for an open string is reproduced correctly.
M-branes in exceptional spacetime.—We now consider

branes in the EdðdÞ-exceptional spacetime with the general-
ized metric MIJðXÞ. For the notational simplicity, we
consider the 27-dimensional E6ð6Þ-exceptional spacetime,
and we ignore the dynamics of branes in the uncompactified
five dimensions. The 1-form fields PI in this case are given
by ðPIÞ ¼ ðdXi;Pi1i2 ;Pi1;…;i5Þ . In order to consider the time
evolution, we choose the time coordinate as one of the
compactified six-torus, as was done in the SL(5) case [9,19]
(or in DFT or EFT [37,38]). The case of EdðdÞ EFT with a
smallerd can be considered simply by restricting the range of
the index i. The EdðdÞ case with d ¼ 7, 8 can also be
considered by using the generalized metric obtained in
Refs. [34,39].
The generalized metric in E6ð6Þ EFT has the form [34]

MIJ ¼ M̂KLLK
ILL

J;

ðM̂IJÞ≡
0
B@

Gij 0 0

0 Gi1i2;j1j2 0

0 0 Gi1;…;i5;j1;…;j5

1
CA;

ðLI
JÞ≡

0
BB@

δij 0 0

1ffiffi
2

p Ci1i2j δj1j2i1i2
0

Li1;…;i5;j
10

ffiffi
2

pffiffiffi
5!

p δj1j2½i1i2Ci3i4i5� δj1;…;j5
i1;…;i5

1
CCA;

Li1;…;i5;j ≡ −
1ffiffiffiffi
5!

p ðCi1;…;i5j − 5C½i1i2i3Ci4i5�jÞ; ð10Þ

where δ
j1;…;jq
i1;…;iq

≡δj1½i1 ;…;δ
jq
iq� and Gi1;…;iq;j1;…;jq ≡

δ
i1;…;iq
k1;…;kq

Gk1j1 ;…;Gkqjq , and we also define Gi1;…;iq;j1;…;jq ≡
δ
k1;…;kq
i1;…;iq

Gk1j1 ;…; Gkqjq . We can calculate the (pþ 1)-form

Ωpþ1 for a 2-brane and a 5-brane as follows:

Ω3 ≡ Pi1i2 ∧ dXi1i2 þ 3F3;

Ω6 ≡ Pi1;…;i5 ∧ dXi1;…;i5 þ Pij ∧ dXij ∧ F3 þ 6F6: ð11Þ
M2-brane action: Our bosonic action for a single

membrane becomes

S ¼ 1

3

Z
Σ

�
1

2
MIJPI ∧ �PJ − Ω3

�
: ð12Þ

The equation of motion for Pi1;…;i5 simply gives an
algebraic relation and, using that, we obtain the action

S ¼
Z
Σ

�
1

6
GijdXi ∧ �dXj −

1

3
Pi1i2 ∧ dXi1i2

þ 1

6
Gi1i2;j1j2

�
Pi1i2 þ

1ffiffiffi
2

p Ci1i2kdX
k

�

∧ �
�
Pj1j2 þ

1ffiffiffi
2

p Cj1j2ldX
l

��
−
Z
Σ
F3: ð13Þ

The equation of motion for Pi1i2 gives

Pi1i2 ¼ −
1ffiffiffi
2

p Ci1i2jdX
j −Gi1i2;j1j2 � dXj1j2 ; ð14Þ

and, substituting this further into the action, we obtain

S ¼ 1

6

Z
Σ
GijdXi ∧ �dXj þ

Z
Σ
ðC3 − F3Þ

−
1

6

Z
Σ
Gi1i2;j1j2 � dXi1i2 ∧ �ð�dXj1j2Þ: ð15Þ

This is similar to the action obtained from the nontopo-
logical Nambu sigma model [see Eq. (4.4) in Ref. [40]]. If
we define the induced metric by hαβ ≡Gij∂αXi∂βXj, the
equation of motion for γαβ can be written as

hαβ ¼
det h
det γ

ðγh−1γÞαβ; ð16Þ

and it shows γαβ ¼ hαβ if it is satisfied at the initial time.
Using this, we obtain the conventional membrane action
[41] including the boundary term [42]:

S ¼ −
Z
Σ
d3σ

ffiffiffiffiffiffi
−h

p
þ
Z
Σ
C3 −

Z
∂Σ

A2: ð17Þ

In constant backgrounds, the equation of motion for Xi

gives dPij ¼ 0 ¼ dPi1;…;i5 , and we can calculate the dual
coordinates via Pij ¼ dYij and Pi1;…;i5 ¼ dYi1;…;i5 once a
classical solution is found. Combining these, we find all
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coordinates XI as we do in the case of the double
sigma model.
M5-brane action: The bosonic action for a 5-brane in

the E6ð6Þ-exceptional space becomes

S ¼ 1

6

Z
Σ

�
1

2
MIJPI ∧ �PJ − Ω6

�
: ð18Þ

Similar to the membrane case, using the equations of
motion for Pi1;…;i5 and Pi1i2 , we can eliminate these
auxiliary fields to obtain the equivalent action,

S ¼ −
1

12

Z
Σ
d6σ

� ffiffiffiffiffiffi
−γ

p
γαβhαβ −

det hffiffiffiffiffiffi−γp θαβðh−1γÞβα
�

þ
Z
Σ

�
C6 −

1

2
H3 ∧ C3 − F6

�
; ð19Þ

where hαβ ≡Gij∂αXi∂βXj, H3 ≡ F3 − C3,

θαβ ≡ δαβ þ
2

3
δαα1α2α3ββ1β2β3

Hα1α2α3H
β1β2β3

¼
�
1þ trðH2Þ

6

�
δαβ −

1

2
ðH2Þαβ; ð20Þ

and ðH2Þαβ ≡Hαγ1γ2Hβγ1γ2 . Here and hereafter, indices are
raised or lowered with ðh−1Þαβ or hαβ. Using the equation of
motion for γαβ,

ffiffiffiffiffiffi
−γ

p 2ðγ−1hγ−1hÞαβ ¼
ffiffiffiffiffiffi
−h

p
2θαβ; ð21Þ

we can eliminate γαβ from the action,

S ¼ −
Z
Σ

d6σ
ffiffiffiffiffiffi
−h

p
trðθ1=2Þ

6
þ
Z
Σ

�
C6 −

1

2
H3 ∧ C3 − F6

�
:

Now, if we consider the quadratic weak-field approxima-
tion in H3, this action becomes

S ∼ −
Z
Σ
d6σ

ffiffiffiffiffiffi
−h

p
þ 1

4

Z
Σ
H3 ∧ �hH3

þ
Z
Σ

�
C6 −

1

2
H3 ∧ C3

�
−
Z
∂Σ

A5; ð22Þ

where the Hodge star �h is taken with respect to the induced
metric hαβ. This is essentially the same as the M5-brane
action given in Ref. [43]. The equation of motion for A2

gives dð�hH3 þH3Þ ¼ 0, and it is consistent with the
linearized (anti-)self-duality relation,H3 ¼ − �h H3. At the
nonlinear level, the equation of motion for A2 obtained
from Eq. (19), together with Eq. (21), is consistent with the
relation C½α1

αHα2α3�α ¼ −ð�hH3Þα1α2α3 , with

Cαβ ≡ tr½θ−ð1=2Þ�
3

δβα − ½θ−ð1=2Þ�αβ: ð23Þ
The known nonlinear self-duality relation [44–46] has the
form C½α1

αHα2α3�α ¼ −ð�hH3Þα1α2α3 , with

Cα
β ¼ K−1

��
1þ 1

12
trðH2Þ

�
δβα −

1

4
ðH2Þαβ

�
; ð24Þ

where K ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½trðH2Þ=24�

p
. Although Cα

β appears
to be different from our matrix Cαβ, we can show that
they are the same matrix using the identity ðH2H2Þαβ ¼
ð2=3ÞtrðH2Þ½1þ ð1=2ÞH2�αβ [47], obtained from the self-
duality relation for a flat hαβ . Moreover, at least when the
target space is flat, using the self-duality relation, we can
easily show that the equation of motion for Xi also has the
same form as the known equation ∂αð

ffiffiffiffiffiffi
−h

p
Cαβ∂βXjÞ ¼ 0

[45,48]. We thus expect our theory to be equivalent to the
conventional theory even at the nonlinear level, although
the action apparently looks different from known ones: e.g.,
the Pasti-Sorokin-Tonin action [49].
It is also interesting to note that the so-called open

membrane metric Cαβ [50] can be shown to be equal to γαβ

using the above relations.
Actions for exotic branes.—Each auxiliary field PI

corresponds to a conventional brane in string or M theory,
and the choice of Ωpþ1 considered in this Letter gives the
worldvolume theory of the conventional branes only. In
constant backgroundswhereMIJ is independent of xi, there
is no reason to stick to the coordinates Xi in constructing
Ωpþ1. In that case, we can instead use QI ≡MIJPJ as the
fundamental fields and define the dual coordinates ~Xi such
thatQi ¼ d ~Xi. Namely, we can rewrite our action in terms of
QI as

S ¼ 1

pþ 1

�
1

2

Z
Σ
ðM−1ÞIJQI ∧ �QJ −

Z
Σ
Ωpþ1

�
: ð25Þ

In DFT, we can parametrize ðM−1ÞIJ in the same way as
Eq. (4) by using the nongeometric potential βij,

ðM−1ÞIJ ¼
�
1 β

0 1

��
~g−1 0

0 ~g

��
1 0

−β 1

�
: ð26Þ

This is also the case in EFT [51], and we can generally
construct a worldvolume theory for an exotic brane that
electrically couples to a nongeometric potential (such as βij)
by choosing Ωpþ1 in the same way as we explained.
However, this is not enough to obtain the worldvolume
theories of all exotic branes. For example, the famous exotic
522-brane and the 164-brane magnetically couple to βij and
βi1;…;i6 , respectively. In fact, they electrically couple to a
certain mixed-symmetry tensor βi1;…;i8;j1j2 or βi1;…;i8;j1;…;j6
[52], but these are not contained in ðM−1ÞIJ for d ≤ 7.
Therefore, in order to describe all of the exotic branes, we
need to constructΩpþ1 such that themagnetic couplings can
be described or find a parametrization of ðM−1ÞIJ in terms
of the mixed-symmetry tensors.
Conclusion and outlook.—We proposed a bosonic action

for a single brane from the perspective of extended field
theories. Once a generalized vector PI and a parametriza-
tion of the generalized metric MIJ are given, we can
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automatically write down the worldvolume action for a p-
brane that electrically couples to a (pþ 1)-form potential
contained in MIJ. As demonstrations, we showed that the
known actions for a string, a membrane, and an M5-brane
can be reproduced for the E6ð6Þ case. By further considering
the higher exceptional groups, E7ð7Þ and E8ð8Þ, we may also
reproduce actions for higher dimensional branes, and it is
important to check whether the known actions, such as the
action of the Kaluza-Klein monopole, can be reproduced
correctly.
In EFT, considering two parametrizations for MIJ, we

can derive both the 11-dimensional and the type IIB
supergravity from a single EFT action [53] (the explicit
type IIB parametrization for EdðdÞ EFT with d ≤ 7 is given
in Ref. [51]). We can apply our formulation also to the type
IIB case to obtain worldvolume theories for various branes.
Because of the success in the reproduction of M-theory
brane actions, we expect that we can also reproduce the
actions for branes in the type IIB string theory.
From the perspective of Refs. [15,32], any Dp-brane is a

single ten-dimensional object in the doubled spacetime, and
the value p can be changed by duality rotations. As an
extension of this idea, it is interesting to investigate a
certain Ω that transforms covariantly under the duality
transformations. Furthermore, the non-Abelian and super-
symmetric extensions should be also studied.
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