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The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force
descriptions of compact binaries. It connects different approximation schemes, and plays a central role in
the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy
and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close
relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and
implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations
of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface
gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift
factor enables tests of analytic predictions for z in spacetimes where the binary is only approximately
circular, giving a new connection between analytic approximations and numerical simulations.
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Introduction.—The relativistic two body problem is of
fundamental importance in both general relativity and the
astrophysics of compact objects. Compact binaries emit
gravitational radiation and inspiral, eventually merging in a
dynamic, nonlinear process. These mergers are the most
promising sources of gravitational waves and provide a
window into untested regimes of physics. The landmark
detection of binary black hole (BH) mergers through
gravitational waves [1–3] highlights both the sophistication
of waveform models and the need for further improvements
to search for and interpret gravitational wave signals.
Current methods include post-Newtonian (PN) expansions
in the slow velocity regime [4], self-force (SF) approx-
imations [5] for systems with high mass ratios, and direct
numerical solutions [6–8] of inspirals beginning tens
of orbits before merger. Each method has its limitations,
and they are combined into effective one body (EOB)
[9,10] and phenomenological waveform models [11].
In addition, connections and comparisons between the
different approaches yield new insights into each of them
[12,13]. Such insights deepen our understanding of rela-
tivity and maximize the scientific benefits of future gravi-
tational wave observations.
Invariant quantities play a crucial role in these compar-

isons, since each method uses different gauges and various
approximation schemes. The invariant redshift factor z has
proven essential in comparisons between analytic approx-
imations, as first discussed for circular binaries [14]. Such
systems remain stationary in the corotating frame, having
a helical symmetry embodied in a helical Killing vector
(HKV) Kμ. In this context, the redshift factor allows for
comparison of results obtained in distinct coordinate gauges
[15,16], and has played a central role in the development of
PN and EOB theory using SF, e.g., Refs. [17–19].

For isolated BHs, the laws of black hole mechanics are
relations between the area, angular momentum, and charge
of the hole [20,21]. These relations provide deep insights
into BH spacetimes and, combined with quantum field
theory, reveal the thermodynamic nature of BHs [22].
Modified laws of BH mechanics exist in spacetimes with
a HKV, interrelating properties of the orbiting bodies (stars
or BHs) [23]. There is a compelling connection between
the redshift factor z and these laws: when applied to HKV
spacetimes in the PN and SF approximations, where
compact objects are represented as test bodies, z enters the
laws as a generalized force, in direct analogy to the surface
gravity of the object [18]. With the help of z, these laws play
a growing role in PN [18,24], SF [25,26], and EOB
[19,27,28] modeling of binaries. These models inform
theoretical templates used by Advanced LIGO [29] to enable
detection and characterization of gravitational waves emitted
by compact binaries [1,30,31].
The extension of redshift-based analyses to numerical

simulations faces two problems. First, past comparisons have
taken place in the context of conservative dynamics, where a
HKV exists exactly or in an averaged sense for eccentric
orbits. However, in simulations dissipation is present, causing
the BHs to inspiral and breaking helical symmetry. Second,
in analytic theory z is computed on particle worldlines,
but simulations deal with extended bodies whose interiors
may be excised from the computational domain, so that no
worldline is available. Thus, while z has been used exten-
sively to communicate between analytic methods, it has not
been used in simulations. An exception is the study of a
related connection between the Bondi energyEB and angular
momentum JB in simulations [32–34].
This Letter reports the first application of redshift

comparisons to numerical simulations. While quasicircular
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binaries do not possess a strict HKV, their early inspiral can
be approximated by adiabatic evolution through a sequence
of circular orbits. As such, they possess an approximate
HKV.We discuss how the connection between the z and the
surface gravity on BHs in the presence of a HKV yields a
normalized surface gravity and corresponding z for BHs.
We then extract z from nonspinning binary BH simulations
and compare it to PN results. Finally, with our redshift
factor, we test the laws of binary BH mechanics for
quasicircular orbits. We also validate the conjecture that
the first law holds when dissipation is present, when
formulated in terms of Bondi quantities [18].
The first law of binary black hole mechanics and the

redshift factor.—Consider a spacetime with HKV Kμ

containing two BHs. When the spacetime is asymptotically
flat, we write Kμ ¼ ð∂tÞμ þ Ωð∂ϕÞμ, where t is the asymp-
totic Killing time measured by inertial observers, ð∂ϕÞμ is a
spacelike vector with closed orbits of length 2π, and Ω is
the orbital frequency of the Killing flow. The BHs have
Killing horizons, with the tangents to their generators χμ

equal to Kμ. The surface gravity κ of the hole is defined by
χμ∇μχ

ν ¼ κχν, and is constant on the horizon. We see that κ
arises from the nonaffine parameterization of χμ, which is
normalized to equal Kμ. The normalization of Kμ is fixed
by the vector ð∂tÞμ, hence by an asymptotic inertial frame.
In the case of a single BH, ð∂tÞμ and ð∂ϕÞμ are the Killing
vectors of Kerr and Ω is the horizon frequency.
HKV spacetimes obey the first law of binary mechanics,

which governs the variations of a Noether chargeQ [23,35],

δQ ¼ δM − ΩδJ ¼ κ1
δA1

8π
þ κ2

δA2

8π
: ð1Þ

Here M and J are the Arnowitt-Deser-Misner (ADM) mass
and angular momentum of the spacetime, and κi are the
surface gravities of the BHs. The power of Eq. (1) lies in the
connection of quantities defined on the BHs to asymptotic
quantities, through the global vector field Kμ. Strictly
speaking, both Eq. (1) and asymptotic flatness require that
some conservative approximation to general relativity holds
in the HKV spacetime.
Next, consider spacetimes with point particles on circular

orbits. These particles model compact objects in PN and SF
approximations. The redshift factor z of a particle moving
with four-velocity uμ is defined as z ¼ 1=ut, where ut ¼
ð∂tÞμuμ. In a certain effective metric, z compares the clock
rates at the particle and at infinity, or equivalently the redshift
of light emitted perpendicular to the particle’s motion. In this
sense, z is a well-defined observable for the particle, and is
preserved by helically symmetric gauge transforms [14].
Reference [18] derives a modified law of BH mechanics

for nonspinning point particles, δQ ¼ z1δm1 þ z2δm2,
with zi and mi the redshift factors and masses of the
particles. Here, zi takes the role of the surface gravity of the
BH it replaces. These relations have been verified to high

PN order and leading order in SF for corotating systems
[25], and have been used to develop analytic approxima-
tions and waveform models, e.g., Refs. [19,27,28,36,37],
often by assuming they continue to hold at higher orders.
The variational equations imply an integral relation [18,23]

Q ¼ M − 2ΩJ ¼ z1m1 þ z2m2 ¼ κ1
A1

4π
þ κ2

A2

4π
; ð2Þ

for spacetimes containing point particles or BHs, respec-
tively. This relation connects local notions of the surface
gravity to the redshift factor and the energy and angular
momentum of the spacetime.
Surface gravity and the redshift factor.—Our first step is

to make sense of z in a spacetime without a particle
worldline on which to evaluate ut. The first law, Eq. (2),
connects the surface gravity and redshift factor: if we
equate the massesmi to the irreducible masses of the holes,
mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai=ð16πÞ

p
, then κi ¼ zi=ð4miÞ and we have

κi ¼ ziκ̄i; ð3Þ
where κ̄ is the surface gravity of an isolated BH. In the limit
of infinite separation, zi → 1, and κi reduce to the expected
values.
A heuristic derivation of Eq. (3) is given in Fig. 1,

which depicts a matched asymptotic picture of a BH binary
with masses m1, m2, and small mass ratio q ¼ m2=m1. The
smaller hole is surrounded by a matching region which
remains large compared to it, but becomes arbitrarily small
in the limit q ≪ 1. In the matching zone, we consider a
family of comoving observers with four-velocity uμ; this
velocity field must be parallel to Kμ by the symmetry, and
becomes equal to the point particle velocity in the limit
q ≪ 1. Because ut ¼ z−1 we have uμ ¼ z−1Kμ. From the
perspective of these observers, the small BH is an isolated
BH immersed in an external tidal field [38]. The observers
use their own asymptotic normalization of the HKV to
define the tangents χ̄μ ¼ z−1χμ, and define their rescaled
surface gravity through χ̄μ∇μχ̄

ν ¼ κ̄χ̄ν. The key idea is that
κ̄ is in fact the surface gravity of an isolated BH; tidal
corrections scale with the square of m2 and are negligible
in the test particle limit. All of the above considerations

FIG. 1. Illustration of the connection between the redshift factor
z and the surface gravity κ of a small black hole, using a matched
asymptotic analysis of a HKV spacetime.
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hold for comparable mass systems so long as the radius of
curvatureR due to external influences on each of the holes
is large compared to the size of the hole, R ≫ mi.
Equation (3) can be made rigorous in a HKV spacetime

using matched asymptotics [39] and is straightforward to
demonstrate for isolated boosted BHs and BHs immersed
in an axisymmetric external potential. Equation (3) allows
us to compare analytic predictions of z to κ of the
corresponding BH in a simulation, although we expect it
will begin to break down when the system becomes very
relativistic, except on the smaller hole when q ≪ 1.
Equation (3) relies on the normalization of χμ in terms of

Kμ and the asymptotic observers, in particular χt ¼ 1. This
normalization is not available in a numerical spacetime. We
only measure tangents lμ with some unknown normaliza-
tion, with κðlÞ given by lμ∇μlν ¼ κðlÞlν. We have lμ ¼ αχμ

for some factor α. The surface gravity inherits this rescal-
ing, κðlÞ ¼ ακ. The unknown α therefore cancels out of the
ratio κðlÞ=lt ¼ κ=χt ¼ κ. Using Eq. (3) we arrive at an
expression for z which is invariant under a rescaling of lμ,

z ¼ κðlÞ
ltκ̄

: ð4Þ

This also accounts for time transformations of the form
t → ~tðtÞ.
Simulations usually track apparent horizons (AHs) rather

than the event horizon (EH). The AHs are good approx-
imations to the EH until near merger [40]. As such, we use
the outward null normals lμ to the AHs to evaluate Eq. (4).
We compute z pointwise on each AH and horizon-average z
for our final result. This allows for a different rescaling of
each lμ, and mitigates any tidal effects contaminating κ.
Approximate helical symmetry and expected errors.—In

order tomakeany senseofEq. (2) in quasicircular inspirals,we
must assume that this relation holds for approximate HKVs.
We imagine that the binary inspirals adiabatically, passing
from circular orbit to circular orbit. At each stage, a small
region of spacetime enclosing the binary can be approximated
by a HKV spacetime. The boundary of each region can be
connected to asymptotic infinity by a null surface, and
radiation propagating on this surface inherits the approximate
HKV. It is clear from these considerations that we should use
the Bondi mass and angular momentum in Eq. (2), which are
constant on each asymptotic null surface but vary as the
inspiral proceeds [18]. Making this argument rigorous using a
two-time-scale expansion [41,42] is an open problem, and our
results provide evidence that this can be done.
With this in mind, we can estimate the sources of error

which prevent Eq. (2) from holding exactly. Killing’s
equation is violated for the approximate HKV: ∇ðμlνÞ ≠ 0.
This generates a shear σμν of the null generators, which
represents gravitational waves entering the horizon and
increasing its mass [43], so that _m∼ jσj2. In our simulations
_m ∼ 10−9 and so jσj ∼ 10−5. Conservatively, nonadiabatic

effects can be expected to scale as _Ω=ð2Ω2Þ which is
typically ∼10−2–10−3 until near merger. Furthermore, only
corotating binaries have a strict HKV, but corotation cannot
occur for an inspiral where Ω evolves. We naively require
ΩH ∼Ω, and errors for our nonspinning configurations
scaling as Ω2

H ∼Ω2 ∼ 10−2–10−4, although studies of
initial configurations indicate a smaller error in practice
[44]. Using AHs rather than the EH introduces another
source of error during the final plunge and merger. Before
the plunge, we expect the AH and EH to be identical, since
the EH generators approach the AH exponentially moving
backward in time from merger, with e-folding time 1=κi
[40]. The AHs are not very dynamic before merger, and so
the generators have no difficulty reaching the AH. We leave
a full investigation and possible mitigation of these errors
for future study.
Numerical simulations.—We simulate quasicircular inspi-

rals using the SPEC code [45] for three mass ratios q ¼ 1,
2=5, and 2=7, in order to explore the dependence of z on q.
We use five resolutions for the q ¼ 1 case, and two for each
of theq ¼ 2=5 andq ¼ 2=7 cases.Ourparameters are chosen
to give circularized [46,47] binaries previously presented in
Ref. [48], or from the publicly available catalog [49] reported
inRef. [50]. TheseBHbinaries execute∼28 orbits, beginning
at initial orbital frequencies of mΩ0 × 102 ≈ 1.22; 1.33,
and 1.46 for q ¼ 1, 2=5 and 2=7, where m is the total mass
of the holes. They have initial eccentricities e < 10−4. Our
numerical error, represented by the difference in numerical
values across resolutions, is always much smaller than the
difference between the numerical and analytic results.
We measure the orbital frequency using extrapolated

waveforms [51–53], by defining ΩðtÞ ¼ ω22ðtrÞ=2,
where ω22 is the frequency of the l ¼ m ¼ 2 mode of
the waveform. References [48,54] compared waveform
extrapolation to the more sophisticated procedure of

FIG. 2. Redshift plotted for three inspirals with q ¼ 1; 2=5, and
2=7 (solid), with all resolutions shown (although they are not
distinguishable), together with 3PN (dashed) and test particle
predictions (dotted). We label the curves by the masses of each
BH, in units of total mass m ¼ m1 þm2.
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Cauchy characteristic extraction [55,56], indicating that
systematic errors introduced by extrapolation are small
enough to neglect here. Local and asymptotic quantities are
compared at equal retarded times tr ¼ t − r�, with r� a
tortoise coordinate defined with respect to the ADM mass
of the spacetime [52]. Using tr to propagate the asymptotic
frequency to the location of the BHs captures most of the
expected relativistic effects, but given the precision of our
comparison further study of this matching is warranted.
Local and asymptotic quantities fðΩÞ are compared to
PN predictions at equal orbital frequencies, Ωorb ¼ Ω; we
neglect the relative 5PN differences between Ωorb and
ω22=2 for PN binaries. The extrapolated waveform is
used to compute the energy and angular momentum
fluxes from the simulation, and the Bondi quantities are
computed by subtracting the integrated flux [51] from the
initial ADMmass and angular momentum of the spacetime,
MBðtrÞ ¼ MADM −

R tr
0 dt _E, and similarly for JB.

We measure the redshift factor in Eq. (4) using the
outward null normals lμ of the AHs, and compute mi using
the area of the AHs. We monitor the spins of the BHs
computed using the approximate Killing vector method
[57], and they remain negligible, Si=m2

i ≲ 10−5–10−4, until
very near merger.
Results.—Figure 2 plots zðmΩÞ for all resolutions of our

three binary systems together with the 3PN analytic
prediction of Ref. [18] and the test particle limit. We
indicate the innermost stable circular orbit (ISCO) fre-
quency for a Schwarzschild BH of total mass m by the
vertical dashed line in all our plots, which we cut off shortly
before a common AH forms. The general trends can
be understood by considering the test particle limit
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–3ðmΩÞ2=3

p
, and we see that the less massive

BHs have a stronger redshift effect due to the deeper
gravitational potential of the more massive holes.

Since z is approximately unity, in Fig. 3 we simply show
the difference Δz ¼ zNR − zPN between numerical and PN
predictions for z. We see remarkable agreement with the
PN predictions in all cases even through the beginning of
the plunge, with better agreement for more massive BHs.
The small oscillations seen for q ¼ 2=5 and 2=7 arise from
residual eccentricities, which are a factor ∼4 larger than
for q ¼ 1. Our numerical errors are always several times
smaller than Δz. Note that the difference between the 2PN
and 3PN predictions are also quite small for these binaries,
≲Δz, so we are likely probing the nonadiabatic effects
discussed above.
Finally, we test the first law, Eq. (2). Figure 4 plots the

difference ΔQ ¼ z1m1 þ z2m2 − ðMB − 2ΩJBÞ, which is
dominated by Δz in all cases, resulting in similar deviations
as in Fig. 3. We emphasize that this comparison is sensitive
to many aspects of the conjectured relation (2) as applied to
binary inspirals, including the mapping at retarded times
between local and global quantities, contamination by non-
adiabatic effects, and the use of Bondi quantities in the first
law. In this sense, the close agreement is remarkable, and
may improve further if those errors that can be controlled are
dealt with. This agreement even during the plunge indicates
that a modified first law may apply beyond the slow inspiral
regime studied by analytic approximations.
The redshift factor of the merged BH approaches unity

when κ̄ is taken to be that of a Kerr BH with the final mass
and spin.
Discussion.—We have presented the first extraction of

the redshift factor z from simulations of BH inspirals, by
exploiting a connection between z and the appropriately
normalized surface gravity of the hole. The result is in good
agreement with PN theory for several mass ratios. We have
tested the first law of binary black holes in the nonadiabatic
regime for the first time, finding remarkable agreement.
Our results are the first step towards a variety of future

connections between simulations and analytic methods. We

FIG. 3. Differences Δz between PN predictions and numerical
values of z in Fig. 2, multiplied by 103, for our three binaries:
q ¼ 1 (top), each member of q ¼ 2=5 (middle), and each member
of q ¼ 2=7 (bottom). All resolutions are plotted.

FIG. 4. Deviation ΔQ from the first law, Eq. (2), multiplied by
103, for our three binaries. All resolutions are plotted.
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will next investigate higher mass ratios to test SF pre-
dictions and extract higher order SF terms. Following this,
we can explore spinning [24,58] and eccentric [59,60]
binaries, where modified first laws hold. A second direction
of study is to investigate the redshift factor on the actual
EHs of BH spacetimes, although this requires intensive
postprocessing [61,62]. One could also improve the extrac-
tion of the redshift by developing a method to compute the
best approximate HKV at each time step, analogous to the
method used in SPEC to compute BH spins [57,63–65].
Finally, our results motivate formal studies of spacetimes
with an approximate HKV.
Looking toward the future, we envision z as one of a

family of invariant quantities used to interconnect analytic
theory, waveform models, and numerical simulations. As
we continue to refine our understanding of the relativistic
two-body problem, these insights will transfer to the
understanding of gravitational wave emission from these
systems, and in turn improve our ability to draw astro-
physical insights from compact binaries in the nascent era
of gravitational wave astronomy.
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