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For a general thermodynamic system described as a Markov process, we prove a general lower bound for
dissipation in terms of the square of the heat current, thus establishing that nonvanishing current inevitably
implies dissipation. This leads to a universal trade-off relation between efficiency and power, with which we
rigorously prove that a heat engine with nonvanishing power never attains the Carnot efficiency. Our theory
applies to systems arbitrarily far from equilibrium, and does not assume any specific symmetry of the model.
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Heat engines have been among central topics of thermo-
dynamics since the seminal work of Carnot [1,2], who
established that the efficiency of any heat engine operating
with two heat baths cannot exceed the Carnot efficiency ηC.
In recent years considerable effort has been devoted
to finding thermoelectric materials with higher efficiency
[3–6], and to fabricating stochastic cyclic heat engines in
small systems [7–12]. It is crucial to develop a fundamental
understanding, on the basis of recent progress in non-
equilibrium statistical mechanics [13], of heat-to-work
conversion mechanisms.
It is known, again since Carnot, that the Carnot effi-

ciency can be achieved in quasistatic processes. But the
power, i.e., the work produced in a unit time, of a
quasistatic engine vanishes since it takes an infinitely long
time to complete a cycle. Then a natural question arises
whether there can be an engine with nonvanishing power
which attains the Carnot efficiency. This is indeed a special
case of a fundamental question of whether there is a
universal trade-off relation between energy transfer and
dissipation in thermodynamic processes. Note that thermo-
dynamics, which does not have the notion of time scale,
cannot answer these questions.
There have been various attempts [14–33] to look for

engines with high efficiency and nonvanishing power. In
particular Benenti, Saito, and Casati [14] studied the
efficiency of thermoelectric transport in the linear response
regime, and argued that broken time-reversal symmetry
(caused, e.g., by a magnetic field), that leads to nonsym-
metrical Onsager matrix, might increase the efficiency; they
even suggested that a cycle with nonvanishing power which
operates reversibly may be realizable. At this level of
argument, the restriction on the Onsager matrix elements
imposed by the second law does not prohibit the coexist-
ence of nonvanishing power with the Carnot efficiency.

This observation triggered a number of studies on the
relation between power and efficiency [15–26,29–33].
Studies based on concrete models mainly within the

linear response regime [15–28] have denied the possibility
of engines with nonvanishing power and the maximum
efficiency, suggesting a general no-go theorem. See
Ref. [29] where such a theorem for special models is
obtained. There still are a number of attempts, on the other
hand, for the realization of such engines [30–33]. No matter
what the current “general belief” may be, it is desirable to
have decisive conclusions on this fundamental issue with-
out resorting to specific models, approximations, or restric-
tions (e.g., to the linear response regime).
In this Letter, we present such general and rigorous results.

We first prove a general lower bound for dissipation (i.e.,
entropy production rate) in terms of the square of the total
heat current to reservoirs. The bound implies a universal
trade-off relation between power and efficiency in heat
engines, which, as a corollary, implies that a heat engine with
nonvanishing power can never attain the Carnot efficiency.
Our theory applies to any heat enginewhich is described by

classicalmechanics, andwhose interactionwith heat baths can
be represented by a Markov process. Practically speaking we
cover essentially any realistic engines, macroscopic or meso-
scopic, except those working in a genuine quantum regime.
Our trade-off relation relies essentially only on the

condition that the stochastic dynamics associated with a
heat bath leaves the canonical distribution invariant. We thus
see that this condition is critical for the no-go theorem for an
engine with nonvanishing power and the Carnot efficiency.
To get the present results, it was essential for us to look at

this old problem in light of the notion of entropy produc-
tion, which had been developed in the long and rich history
of nonequilibrium statistical mechanics [13]. In particular,
the idea of the partial entropy production rate developed for
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Markov processes in Refs. [34–36] played an important
role. Some of the crucial ideas and techniques in the present
Letter appeared in Ref. [37] by two of us (N. S. and K. S.).
Main results.—Consider an arbitrary heat engine which

undergoes a cyclic process with period τ. During a cycle, the
engine may interact with n external heat baths with finite
inverse temperatures β1;…; βn in an arbitrary manner. Let
JνðtÞ be the heat current that flows from the engine to the νth
bath at time t. The energy conservation implies that the total
work done by the engine isW ¼ −

P
n
ν¼1

R
τ
0 dtJνðtÞ. Define

the total entropy production in the baths, which is a measure
of dissipation in the cycle, by

ΔS ≔
Xn
ν¼1

βν

Z
τ

0

dtJνðtÞ: ð1Þ

It satisfies ΔS ≥ 0, which is the second law.
Our main finding is the inequality

�Z
τ

0

dt
Xn
ν¼1

jJνðtÞj
�

2

≤ τΘ̄ΔS; ð2Þ

which is proved for a general engine described by a Markov
process. Here Θ̄, which depends on the model and state, is
always finite and proportional to the size of the engine [38].
For the standard Langevin-type heat baths described by
Eq. (7), one has Θ̄ ¼ 2γ̄ K̄ =β̄ m̄, where K̄ denotes the time
average of the total kinetic energy of the engine, and β̄, γ̄
and m̄ are properly averaged inverse temperatures (of the
baths) and the damping constant and the mass (of the
engine), respectively. See Ref. (11). Note that both the lhs
and rhs of Eq. (2) are proportional to the square of the size
of the engine. Therefore the inequality is meaningful in the
thermodynamic limit as well.
The inequality (2) manifests the fundamental trade-off

relation: nonvanishing current inevitably induces dissipation.
To see the implication on efficiency of heat engines, consider
the case with n ¼ 2 and let the inverse temperatures of the
baths be βH and βL with βH < βL. We denote, as usual, by
QH > 0 the heat absorbed by the engine from the bath with
βH, and by QL > 0 the heat flowed from the engine to
the bath with βL. The work is then W ¼ QH −QL, and the
entropy production is ΔS ¼ βLQL − βHQH. The bound
Eq. (2) reduces to ðQH þQLÞ2 ≤ τΘ̄ΔS.
Let η ≔ W=QH be the efficiency of the engine, and ηC ≔

1 − ðβH=βLÞ be the Carnot efficiency. Noting a relation in
thermodynamics ηðηC − ηÞ ¼ WΔS=fβLðQHÞ2g [23], our
bound yields a trade-off relation between power and
efficiency

W
τ
≤ Θ̄βLηðηC − ηÞ: ð3Þ

The averaged power W=τ must vanish as η↑ηC or
(obviously) as η↓0. We conclude that an engine with
nonvanishing power never attains the maximum efficiency.
The bound (3) was discussed numerically in Ref. [20] for

thermoelectric phenomena, and derived for Brownian heat
engines with time reversal symmetry in Ref. [24], both in
the linear response regime. It is proved here for systems
arbitrarily far from equilibrium for general models without
any specific symmetry.
Setup and the main inequality.—Suppose that there are

a heat engine, n heat baths with inverse temperatures
β1;…; βn, and an external agent who operates on the engine
(by, e.g., moving a piston, changing a potential, attaching or
detaching heat baths). Although our theorem applies to
general Markov processes, we focus on a general classical
engine modeled as a system of N particles (with inertia)
with arbitrary confining potential and interaction, possibly
under magnetic field. Let mi, ri, and vi denote the mass, the
position, and the velocity, respectively, of the ith particle
(with i ¼ 1;…; N) [39]. We collectively represent by X ¼
ðr1;…; rN ; v1;…; vNÞ the state of the system. We assume
that the system is characterized by a set of parameters λ,
which does not only determine the dynamics of the system
(i.e., engine), but also the way it couples to the baths. We
denote by EλðXÞ ≔ P

N
i¼1mijvij2=2þ Uλðr1;…; rNÞ the

total energy of the system with parameter λ.
The external agent varies the parameters according to a

fixed function λðtÞ of time t. Let PtðXÞ be the probability
density to find the system in X at t. It obeys the continuous
master equation [40,41]

∂
∂tPtðXÞ ¼ ðL̂λðtÞPtÞðXÞ: ð4Þ

The time evolution operator is decomposed into determin-
istic and dissipative parts as

L̂λ ¼ L̂0;λ þ
Xn
ν¼1

XN
i¼1

L̂ν;λ
i : ð5Þ

Here L̂0;λ is the Liouville operator (see C of Ref. [42])
for the deterministic dynamics described by the Newton
equation mi ̈riðtÞ ¼ Fλ

i ðXÞ. The force Fλ
i ðXÞ consists of

−∇iUλðr1;…; rNÞ and, possibly, some velocity dependent
force (such as the Lorentz force). The only assumption is
that the resulting time evolution with fixed λ preserves both
the phase space volume and the total energy.
The operator L̂ν;λ

i with ν ¼ 1;…; n and i ¼ 1;…; N
represents the dissipation of the ith particle, i.e., the change
in vi, caused by the νth heat bath. The most general
expression reads [40]

ðL̂ν;λ
i PÞðXÞ ≔

Z
dYfrν;λi ðX; YÞPðYÞ − rν;λi ðY; XÞPðXÞg;

ð6Þ
where rν;λi ðX; YÞ ≥ 0 is the hopping rate from Y to X.
It leaves the canonical distribution with βν invariant,
i.e.,

R
dYfrν;λi ðX; YÞe−βνEλðYÞ − rν;λi ðY; XÞe−βνEλðXÞg ¼ 0.

Discrete noise in small engines such as the Rayleigh piston
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and the Brownian motor [43–45] can be represented by
Eq. (6) with suitably chosen rν;λi ðX; YÞ, whose explicit form
can be found, e.g., in Eq. (2) of Ref. [44]. In the limit where
the change in velocity is infinitesimally small, Eq. (6)
reduces to

L̂ν;λ
i ¼ γνðλ; riÞ

mi

� ∂
∂vi vi þ

1

βνmi

∂2

∂vi2
�
; ð7Þ

which describes the standard Langevin noise [40]. With
Eq. (7), the master equation (4) becomes the Kramers
equation. The “damping constant” γνðλ; rÞ represents the
magnitude of noise from the νth bath. Note that it may
depend on r, and on t through λðtÞ.
We stress that the above formulation covers essentially

any classical heat engines including the Brownian heat
engine which was recently realized experimentally [8,9]
using a single particle in a harmonic trap [46]. It is also easy
to treat overdamped dynamics [47].
The averaged heat current to the νth bath at t is defined in

the standard manner (see A of Ref. [42]) as

JνðtÞ ≔ −
XN
i¼1

Z
dXEλðtÞðXÞðL̂ν;λðtÞ

i PtÞðXÞ: ð8Þ

We then define the total entropy production rate in the
system and the baths by

σtotðtÞ ≔
d
dt

HðPtÞ þ
Xn
ν¼1

βνJνðtÞ; ð9Þ

where HðPÞ ≔ −
R
dXPðXÞ logPðXÞ is the Shannon

entropy of the system.
The core of our theory is the inequality

Xn
ν¼1

jJνðtÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘðtÞσtotðtÞ

p
; ð10Þ

which is valid for any Pt satisfying the master equation (4).
HereΘðtÞ is a quantity which depends on the model and the
state, but is finite and proportional to N. For baths with
Eq. (7), we have

ΘðtÞ ¼
XN
i¼1

Xn
ν¼1

1

βν
hγν(λðtÞ; ri)jvij2it; ð11Þ

where h� � �it denotes the average with respect to Pt. See B
of Ref. [42] for a concrete expression and an upper bound
for ΘðtÞ for baths with Eq. (6).
To treat thermodynamic cycles of period τ, we consider

the case λð0Þ ¼ λðτÞ, and assume P0 ¼ Pτ, which is
always realized by running the cycle sufficiently many
times. We then define the total entropy production (in the
baths) during a cycle by

ΔS ≔
Z

τ

0

dtσtotðtÞ ¼
Z

τ

0

dt
Xn
ν¼1

βνJνðtÞ; ð12Þ

where the contribution fromHðPtÞ vanishes because of the
cyclicity. It is essential that ΔS is written only in terms of
the currents, which are measurable quantities. By integrat-
ing Eq. (10) over t, and using the Schwarz inequality, we
readily obtain Eq. (2), whose implications have already
been discussed, with Θ̄ ≔ τ−1

R
τ
0 dtΘðtÞ.

Derivation.—We study the Markov jump process
obtained by faithfully discretizing the continuous master
equation (4). We prove inequalities corresponding to
Eq. (10), from which Eq. (10) follows as continuum limits.
The mathematically minded reader should understand that
we interpret Eq. (4) as a continuum limit of the master
equation (13).
As usual we decompose the whole phase space into

small 6N-dimensional parallelepipeds whose size in the
v-directions is ε and that in the r-directions is ε0. Each cell
is represented by X at its center.
We now regard X as a discrete variable, and denote by Eλ

X
the corresponding energy. The probability pt;X to find the
system in X at t obeys the master equation

d
dt

pt;X ¼
X
Y

RλðtÞ
XY pt;Y ; ð13Þ

which is obtained as a discretization of Eq. (4). See C of
Ref. [42] for the (standard) discretization procedure.
As in Eq. (5), the transition rate is decomposed as

Rλ
XY ¼ R0;λ

XY þP
n
ν¼1

P
N
i¼1 R

ν;i;λ
XY . To simplify the notation

we also write this as Rλ
XY ¼ P

μR
μ;λ
XY , where μ ¼ 0 or μ ¼

ðν; iÞ with ν ¼ 1;…; n and i ¼ 1;…; N. The transition rate
for each μ satisfies Rμ;λ

XY ≥ 0 for X ≠ Y and
P

XR
μ;λ
XY ¼ 0.

For the deterministic part, we assume that
P

YR
0;λ
XY ¼ 0,

which means that the uniform distribution is invariant
under R0;λ

XY. This property is always satisfied in the faithful
discretization of a dynamics which preserves the phase
space volume. For the dissipation of the ith particle from
the νth bath, we assume the invariance of the corresponding
canonical distribution, i.e.,

P
YR

ν;i;λ
XY e−βνE

λ
Y ¼ 0.

We decompose the heat current into contributions from
each particle as JνðtÞ ¼

P
N
i¼1 Jν;iðtÞ, where

Jν;iðtÞ≔−
X
X;Y

EλðtÞ
X Rν;i;λðtÞ

XY pt;Y ¼−
X
X;Y

Ki
XR

ν;i;λðtÞ
XY pt;Y ; ð14Þ

with Ki
X ≔ mijvij2=2. We here noted that the dissipative

dynamics changes only the velocity. We also decompose
the change in the Shannon entropy HðpÞ ≔
−
P

XpX logpX as

d
dt

HðptÞ ¼ −
X
X

_pt;X logpt;X ¼
X
μ

ημðtÞ ð15Þ

with ημðtÞ ≔ −
P

X;YR
μ;λðtÞ
XY pt;Y logpt;X. We then define the

entropy production rate for μ by σμðtÞ ≔ ημðtÞ þ βμJμðtÞ
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with β0 ≔ 0 and βðν;iÞ ≔ βν. The total entropy production
rate is written as σtotðtÞ ¼

P
μσμðtÞ.

Define the dual transition rate [48] by ~Rμ;λ
XY ≔

eβνðEλ
Y−E

λ
XÞRμ;λ

YX, which satisfies
P

X
~Rμ;λ
XY ¼ 0 because of

the condition
P

YR
μ;λ
XYe

−βνEλ
Y ¼ 0. One then has

σμðtÞ ¼
X
X;Y

Rμ;λðtÞ
XY pt;Y log

Rμ;λðtÞ
XY pt;Y

~Rμ;λðtÞ
YX pt;X

¼
X
X≠Y

s
�
Rμ;λðtÞ
XY pt;Y ; ~R

μ;λðtÞ
YX pt;X

�
; ð16Þ

where the first expression is standard [13] (see F of
Ref. [42]), and the second with sða; bÞ ≔ a logða=bÞ þ
b − a was introduced in Refs. [34–36], where the
summand was named the partial entropy production rate.
By using the inequality sða; bÞ ≥ c0ða − bÞ2=ðaþ bÞ
with c0 ¼ 8=9 (see E of Ref. [42]), and defining
~Aμ;�
XY ≔ Rμ;λðtÞ

XY pt;Y � ~Rμ;λðtÞ
YX pt;X, we have

σμðtÞ ≥ c0
X
X≠Y

ð ~Aμ;−
XY Þ2
~Aμ;þ
XY

: ð17Þ

For μ ¼ ðν; iÞ we rewrite Eq. (14) as

JμðtÞ ¼ −
X
X≠Y

ΔKi
X
~Aμ;−
X;Y

¼ −
X
X≠Y

ΔKi
X

ffiffiffiffiffiffiffiffiffi
~Aμ;þ
X;Y

q ~Aμ;−
X;Yffiffiffiffiffiffiffiffiffi
~Aμ;þ
X;Y

q ; ð18Þ

whereΔKi
X ≔ Ki

X − hKiit. By using the Schwarz inequality
and Eq. (17), and noting the relation

P
Yð≠XÞðΔKi

XÞ2 ~Rμ;λ
YX ¼P

Yð≠XÞðΔKi
XÞ2Rμ;λ

YX, which follows from ~Rμ;λ
XX ¼ Rμ;λ

XX, we
arrive at

jJμðtÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θð1Þ

μ ðtÞσμðtÞ
q

ð19Þ
with

Θð1Þ
μ ðtÞ ≔ 1

c0

X
X≠Y

ðΔKi
XÞ2Aμ;þ

XY : ð20Þ

Here, we defined Aμ;�
XY ≔ Rμ;λðtÞ

XY pt;Y � Rμ;λðtÞ
YX pt;X. By sum-

ming Eq. (19) over μ, applying the Schwarz inequality, and
noting that Eq. (17) implies σ0ðtÞ ≥ 0, we finally getP

n
ν¼1

P
N
i¼1 jJν;iðtÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘðtÞσtotðtÞ

p
withΘðtÞ ¼ Θð1ÞðtÞ ≔P

n
ν¼1

P
N
i¼1Θ

ð1Þ
ν;i ðtÞ. By taking the continuum limit, this

implies the desired Eq. (10). For discrete noise, where the
rate rν;λi ðX; YÞ is finite, Θð1ÞðtÞ remains finite in the
continuum limit (see B of Ref. [42]).
In the limit of Langevin noise with Eq. (7), where

rν;λi ðX; YÞ becomes singular, Eq. (19) becomes meaningless
since Eq. (20) diverges. In this case we make use of the

additional symmetry Rμ;λ
XYe

−βνEλ
Y ¼ Rμ;λ

YXe
−βνEλ

X (i.e., the
detailed balance condition, see C of Ref. [42]) to derive
a stronger bound with a new definition of ΘðtÞ. With the
new symmetry, one easily verifies the standard expression
[13] (see F of Ref. [42])

σμðtÞ ¼
X
X;Y

Rμ;λðtÞ
XY pt;Y log

Rμ;λðtÞ
XY pt;Y

Rμ;λðtÞ
YX pt;X

; ð21Þ

for μ ≠ 0. By noting the symmetry between X and Y this
can be written as

¼ 1

2

X
X;Y

fRμ;λðtÞ
XY pt;Y − Rμ;λðtÞ

YX pt;Xg log
Rμ;λðtÞ
XY pt;Y

Rμ;λðtÞ
YX pt;X

: ð22Þ

By using the inequality ða − bÞ logða=bÞ ≥ 2ða − bÞ2=
ðaþ bÞ (see E of Ref. [42]), we find that

σμðtÞ ≥
X
X≠Y

ðAμ;−
XY Þ2
Aμ;þ
XY

: ð23Þ

Again by using the symmetry, Eq. (14) is rewritten as

JμðtÞ ¼ −
X
X≠Y

Ki
XA

μ;−
XY ¼ −

1

2

X
X≠Y

ðKi
X − Ki

YÞAμ;−
XY

¼ −
1

2

X
X≠Y

ðKi
X − Ki

YÞ
ffiffiffiffiffiffiffiffiffi
Aμ;þ
XY

q
Aμ;−
XYffiffiffiffiffiffiffiffiffi
Aμ;þ
XY

q ; ð24Þ

which leads to Eq. (19) with Θð1Þ
μ ðtÞ replaced by Θð2Þ

μ ðtÞ:

Θð2Þ
μ ðtÞ ≔ 1

4

X
X≠Y

ðKi
X − Ki

YÞ2Aμ;þ
XY

¼ 1

2

X
X≠Y

ðKi
X − Ki

YÞ2Rμ;λðtÞ
XY pt;Y : ð25Þ

The continuum limit, which is now finite, is readily
evaluated as in D of Ref. [42], and we get Eq. (11)

with ΘðtÞ ¼ Θð2ÞðtÞ ≔ P
n
ν¼1

P
N
i¼1 Θ

ð2Þ
ν;i ðtÞ.

Discussion.—We have proved that the power of a
classical Markovian heat engine must vanish as its effi-
ciency approaches the Carnot bound. The essence was the
trade-off relation (2) which shows that any heat flux
inevitably induces dissipation. In Ref. [33], attainability
of nonvanishing power and the Carnot efficiency is dis-
cussed with the Onsager matrix in the classical regime. Our
result denies the possibility of realizing this abstract
proposal as a Markov process. The clarification of pro-
posals based on quantum systems [30–32] is the next
challenge. Toward this direction, extensions of the present
results to the case where the engine exchanges quantum
particles with particle baths will be discussed in Ref. [47].
A quantum cyclic heat engine will also be considered
in Ref. [49].
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From a theoretical point of view, the most basic result of
ours is the inequality (10), which states for each moment
that σtotðtÞ is strictly positive whenever there is nonvanish-
ing heat current. We must note that σtotðtÞ, which involves
the change in the Shannon entropy, may not be a physically
observable quantity. But if we are able to interpret σtotðtÞ as
a measure of instantaneous dissipation, the bound (10) can
be regarded as a more fundamental trade-off relation
between heat current and dissipation, which is valid in
any thermodynamic processes. See Ref. [50] for a related
observation. It is interesting to apply the relation to
transient processes.
When the state of the engine is close to equilibrium, the

relation (10) may be understood as follows. In order to have
nonvanishing current J between the engine and a bath, there
should be a differenceΔβ in their inverse temperatures. Then
the current J induces the entropy production rate σ ∼ ΔβJ.
Now if the current satisfies the linear response J ≃ κΔβ, we
have σ ∼ J2=κ. The bound (10), which is J2 ≲ Θσ, then
reads κ ≲ Θ. Thus, at least everything is close to equilibrium,
our trade-off relation boils down to an upper bound on the
heat conductivity. In fact, in the close-to-equilibrium regime,
we can show [47] κ ≃ Θð2Þ for Θð2Þ of Eq. (11) or Eq. (25).
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