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Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled
harmonic resonator to perform quantum state measurement. Previous works have found that such
measurements can induce state transitions in the qubit if the number of photons in the resonator is too high.
We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that
they show resonant behavior as a function of photon number. We develop a theory for these observations
based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the
Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important
of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by
measuring the photon occupation of the resonator when transitions occur while varying the detuning
between the qubit and resonator.
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The Jaynes-Cummings (JC) Hamiltonian [1,2] describes
the interaction between a quantum two-level system (TLS)
and a harmonic oscillator, and is used tomodel a hugevariety
of physical systems. For example, in superconducting qubits,
it describes the interaction between the qubit and a resonator
used to measure the qubit’s state. As predicted by the
dispersive limit of the JC model, each qubit state induces
a different frequency shift in the resonator, and the qubit state
is inferred by measuring the resonator’s response to a probe
pulse [3–5]. Dispersive measurement itself played a key role
in recent experiments exploring the nature of quantum
measurement [6–8], and the high speed and accuracy of
dispersive measurement has been critical in establishing
superconducting qubits as a compelling technology for
quantum computation [9,10]. Furthermore, repetitive error
protection and characterization protocols [11–16] require
that the qubit remain in a known state within the qubit
subspace after the measurement is complete, a property
guaranteed by the dispersive JC Hamiltonian.
However, several experiments with superconducting

qubits have found that as the number of photons occupying
the resonator n is increased past a certain point, the qubit
suffers anomalous state transitions [17–20]. It was long
believed that these transitions could be explained by the
breakdown of the dispersive approximation of the JC model
as n exceeds a critical photon number nc, but recent theory
showed that the transitions are not predicted by the JC
interaction even with very large n [21]. Perhaps more
puzzling, the transition probability is observed to be

nonmonotonic with increasing photon number. As these
transitions limit the speed and lower the fidelity of qubit
measurement [18,20], understanding and eliminating them
is an important step in implementing high fidelity quantum
algorithms, simulation, and error corrected computation.
In this Letter, we investigate the cause of anomalous

qubit transitions in a superconducting qubit-resonator
system. We characterize the transitions by measuring the
state of the qubit after driving the resonator with variable
power, and find that the qubit jumps outside the two-level
subspace. Moreover, these transitions show a resonant
behavior as a function of drive power. By reexamining
an important assumption of the JC Hamiltonian, the
rotating wave approximation (RWA), we develop a theory
based on level crossings with other states of the qubit-
resonator system, and find that the theory matches exper-
imental observations with no free parameters.
Our experiment used a superconducting transmon qubit

[5,22] capacitively coupled to the fundamental mode of a
quarter wave coplanar waveguide resonator with coupling
strength g=2π ≈ 87 MHz [23], as illustrated in Fig. 1(a). The
transmon’s weakly anharmonic potential supports a ladder of
energy levels, the bottom twoofwhich are used as a qubit. By
biasing the transmon’s dc superconducting quantum inter-
ference device (SQUID) with a magnetic flux, we can tune
the transmon’s j0i → j1i transition frequency ω10. In the
absence of bias flux, the transmon has its maximum
frequency ω10=2π ¼ 5.4 GHz, and the anharmonicity is
η=2π ≡ ðω21 − ω10Þ=2π ¼ −221 MHz. The fundamental
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mode of the resonator is a quantum harmonic oscillator with
frequencyωr=2π ≈ 6.78 GHz and is coupled with an energy
decay rate of κ ≈ 1=ð37 nsÞ through a bandpass Purcell filter
[20,24] to a 50 Ω output line and amplifiers.
Each transmon level jii induces a different frequency

shift on the resonator, yielding a set of distinct resonator
frequencies ωr;jii. To measure the transmon state, we drive
the system through the Purcell filter at a frequency between
ωr;j1i and ωr;j2i [26], populating the resonator with photons
that leak out from the resonator, through the filter, and into
the amplifier circuit. The amplitude and phase of the
outgoing photons are shifted (dispersed) in a way that
depends on the resonator frequency, and thus the transmon
state. We digitize this signal and extract the amplitude and
phase as a point in the IQ plane. In Fig. 1(b), we plot the IQ
response of the resonator with the transmon prepared in
various states, which acts as our calibration for distinguish-
ing the state of the transmon in subsequent measurements.
When the resonator-transmon detuning jΔj≡ jω10 − ωrj is
not more than 1.4 GHz, the resulting IQ points resolve up to
the first four transmon states, while at larger jΔj (relevant to
most of our data) we can only resolve the first three states
due to the smaller dispersive shift.
To investigate the effect of resonator photons on the

transmon state, we use the pulse sequence illustrated in
Fig. 2(a). The transmon is initialized to j0i by idling for
several times its energy decay lifetime. We first drive the
resonator with a 2 μs long, variable power pulse. This
“stimulation pulse” injects a number of photons into the
resonator that, when large enough, induces transitions in
the transmon state. We then wait 500 ns (13 decay time
constants) for the resonator to ring down [27]. Finally, we
drive the resonator again with a fixed low power pulse to
measure the transmon without inducing further transitions,
and record the IQ response of the resonator. Based on the

calibration shown in Fig. 1(d), we identify each IQ point as
one of the transmon states, or if the point is more than three
standard deviations from any of the calibrated distributions,
we label it as an “outlier”.
The results are striking in two ways. First, as the

stimulation pulse power is raised, the transmon jumps
from j0i not only to j1i but also to j2i, j3i and even higher
states, as shown in Fig. 2(b). Although we can resolve only
up to j3i, the characteristic arc of the IQ points with
increasing state index appears to continue to what we
estimate to be j5i or higher. Second, the probability of
transitions is highly nonmonotonic with power, as was
previously seen in Refs. [18,19]. In particular, the shapes of
the features in probability versus power resemble resonance
peaks, with large peaks in the outlier probability at drive
powers 0.7 (feature A) and 0.2 (feature B), a small peak in

FIG. 1. Transmon-resonator system. (a) Circuit and potential
diagrams. The transmon (violet) is capacitively coupled to the
resonator (orange). The resonator is inductively coupled to a
bandpass Purcell filter with Q ≈ 30 [20]. The resonator is driven
by an arbitrary waveform generator connected to the filter, and
the dispersed photons are measured by a low noise, impedance
matched parametric amplifier [25] also connected to the filter.
(b) In-phase and quadrature (IQ) components of the dispersed
signal measured with the transmon prepared in the first four
states, with each state forming an IQ “cloud.” The circles
represent 3σ from fitting a Gaussian distribution to each cloud’s
projection onto lines connecting the clouds’ centers.

(a)

(b)

(c)

(d)

FIG. 2. (a) Control sequence for probing the effect of resonator
photons on the transmon. The spectroscopy pulse is used only in
the ac Stark measurement. (b) IQ data for drive powers 0.02, 0.2,
and 0.8 (arbitrary units), with ω10 ¼ 5.38 GHz. The circles
represent 3σ for the four resolvable transmon states as calibrated
in Fig. 1(b). At high power, the transmon is clearly driven to
states higher than j3i. (c) Transmon state probabilities versus
stimulation power. In addition to the four calibrated transmon
states, we show the probability that the measurement was > 3σ
from any of the resolved states, labeled “outliers.” Note the two
large resonance shaped peaks labeled A and B. (d) Stark shifted
transmon frequency ω10 versus stimulation pulse power. We
convert the shifted ω10 to n̄ using a numerical theory (right
vertical axis) [28].
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j1i near 0.15, another small peak in j2i near 0.05, and
various other peaks at other powers. The peaked structure
rules out any process that would have monotonically
increasing transitions with increasing drive power, such
as chip heating or dressed dephasing [31,32], as the
dominant mechanism.
In order to connect our results to theoretical models, we

next convert stimulation pulse power to photon number n.
We cannot measure n directly, but resonator photons cause
the qubit frequency to shift downward in what is called the
ac Stark effect [33]. We map drive power to n by measuring
the ac Stark shifted qubit frequency for each resonator drive
power and converting that frequency to n using a numerical
model based on separately measured parameters g and Δ
[28]. To measure the ac Stark shift, we repeat the previous
experiment with the addition of a spectroscopic microwave
pulse on the transmon after the driven resonator has reached
the steady state. For each drive power we vary the
frequency of the transmon pulse; the j1i probability is
maximized when the pulse is on resonance with the shifted
transmon frequency.
We show the results of the ac Stark shift measurement

with the computed photon numbers in Fig. 2(d) for the
same drive powers as in Fig. 2(c). Note that feature B (black
dashed line) occurs at 170≲ n≲ 250, which is, interest-
ingly, considerably larger than the critical photon number
nc ≡ ðΔ=gÞ2=4 ≈ 60 introduced in Ref. [3].
The peaks in Fig. 2(c) are thus seen to indicate particular

values of n at which the qubit-resonator system is espe-
cially susceptible to transitions. The association of n with
qubit frequency shift further suggests that the peaks are due
to some form of frequency resonance. With the observation
of resonant transitions to higher transmon levels, we now
consider the Hamiltonian of the transmon-resonator system
and look for terms, possibly neglected in the dispersive or
rotating wave approximations, which explain these
observations.
We start with the bare Hamiltonian

Hb ¼
X

k

Ekjkihkj þ ℏωra†a; ð1Þ

where Ek is the energy of transmon level k and ωr is the
frequency of the resonator. This Hamiltonian produces the
JC ladder as shown by the solid lines in Fig. 3.
Adding the interaction term HI due to the capacitive

coupling gives

HI ¼
X

k;k0;n

ℏgk;k0
ffiffiffi
n

p jk0; n − 1ihk; nj þ H:c:; ð2Þ

where the states are labeled jqubit; resonatori, gk;k0 ¼
ghkjQjk0i=h0jQj1i, and hkjQjk0i are the transmon charge
matrix elements. This interaction imparts an n-dependent
shift on the bare levels producing eigenstates, two of which
are shown as dashed lines in Fig. 3. As indicated by the
long horizontal arrow, at certain n the ladder contains

resonances between states where the qubit goes from j0i to
higher levels such as j6i. This critical observation could
explain both the resonance structure and the transitions to
higher transmon levels observed in the data. However, it
remains to see how HI couples the resonant levels.
The full interactionHI is typically simplified by the RWA

to contain only those terms that preserve excitation number,

HRWA ≡X

k;n

ℏgk;kþ1

ffiffiffi
n

p jkþ 1; n − 1ihk; nj þ H:c: ð3Þ

These terms (curved arrows in Fig. 3) divide the JC ladder
into excitation preserving subspaces that we call “RWA
strips.”UnderHRWA, the systemmoves onlywithin an RWA
strip; taking the system out of the dispersive limit with
n ≫ nc only results in a reduction of the resonator dispersive
shift [21,28]. Therefore, HRWA does not allow transitions
between resonant levels.
The critical part of the Hamiltonian is Hnon−RWA,

containing terms in HI that do not conserve excitation
number [28]. These terms can be as large as the RWA
terms, but are usually neglected on the grounds that they are
more off resonant than the RWA terms (in our system the
RWA terms are ∼1 GHz off resonance, while the non-RWA
terms are ∼13 GHz off resonance). However, keeping these
terms reveals the essential reason for the unwanted state
transitions. The non-RWA terms couple next-nearest neigh-
boringRWAstrips (i.e., those differingby2 in total excitation

FIG. 3. JC ladder for large values of n. Bare states are shown as
solid lines and two of the eigenstates are shown as dashed lines.
Dark curved arrows indicate coupling within an RWA strip with
corresponding RWA coupling strengths shown below. The ladder
has an energy resonance between j0; ni and j6; n − 4i (long black
arrow). Non-RWA couplings (short straight arrows) allow for
interstrip transitions. The couplings to j1; nþ 1i (red) and
j3; n − 1i (yellow), along with those within the RWA strip,
mediate the transition between the resonant levels. The coupling
to j2; n − 1i (green), which mediates additional resonant tran-
sitions, requires a Hamiltonian term coupling transmon states of
equal parity; this is forbidden if the transmon potential is
symmetric. Note the energy spacing between states jk; ni and
jkþ 1; n − 1i is Δ as indicated in the top left.
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number) together, as shown in Fig. 3. Combined with the
intrastrip coupling provided by HRWA, the non-RWA cou-
pling allows multistep (i.e., higher order) processes to
connect the resonant levels. For example, Hnon−RWA carries
the system from j0; ni to j1; nþ 1i in anotherRWAstrip, and
then HRWA carries the system within the strip to j6; n − 4i.
Note that although the full process conserves energy, the
individual steps do not.
To find the condition under which the resonances occur,

we numerically compute the frequencies ωkðnÞ≡
Ejk;n−ki=ℏ − nωr (the overline indicates eigenstate) of the

levels within each RWA strip, as functions of n. As n
increases, energy levels within each strip repel each other
more strongly and fan out, as illustrated by the solid lines in
the “fan diagram” in Fig. 4(a). By superimposing fan
diagrams of two next-nearest neighboring RWA strips,
as shown by the dashed lines, we see that they have
multiple intersections, meaning that the JC ladder contains
multiple resonances. For example, the left red dot in Fig. 4
(a) shows that the transmon-resonator state j0; ni can be
brought on resonance with j6; n − 4i. The presence of
crossings with higher transmon states agrees with the
experimental observation of transitions to states higher
than j3i.
Next, we compute the n at which various intersections

occur as a function of the qubit-resonator detuning Δ,
yielding the lines in Fig. 4(b). As jΔj increases, the spacing
between levels within an RWA strip also increases; see
Fig. 3. However, the spacing between strips is fixed at ωr,
so with increased jΔj fewer photons are required to bring
j0; ni on resonance with states in higher strips and so the
transitions occur at lower n. Note that while we use n in the
theory, the experiment drives the resonator into a coherent
state with mean photon number n and fluctuationsffiffiffi
n

p
< 0.1n. Also, although the n at which the energy

resonance occurs is not related to nc, the effective couplings
between resonant levels are large enough to yield the
experimental features only when n ≳ nc.
To confirm the theoretical prediction, we repeat the

experiment shown in Fig. 2 for several values of ω10 by
biasing the transmon’s SQUID with magnetic flux. At each
ω10, we find the values of n of features A and B [as shown
in Fig. 2(d)] and plot these points in Fig. 4(b). The
experimental points for feature A (black circles) and feature
B (blue squares) are well fit by numerically computed
curves for the transitions from j0; ni to j6; n − 4i and
j3; n − 2i, respectively. Note that the theory lines are
calculated using only the measured ωr, ω10, and g, with
no free parameters fitted to the data.
However, the transition from j0; ni to j3; n − 2i is actually

unexpected. If the transmon potential is symmetric, as is
usually assumed [5], then gi;j is only nonzero when j − i is
odd. Therefore,HI should only couple RWA stripswhere the
difference in total excitation number is even, so the transition
to j3; n − 2i should be forbidden. Nevertheless, the theory

line for the j3; n − 2i transition fits the data well, indicating a
possible asymmetry in the transmon potential.We confirmed
this asymmetry by observing j0i → j2i Rabi oscillations
when driving the transmon at ω01 þ ω12 [28]. Through
comparison with Rabi oscillations on the j0i → j1i transi-
tion, we experimentally estimate jh0jQj2i=h0jQj1ij ≈ 10−2

[28]. This matrix element is large enough to explain the
transitions to j3; n − 2i, and so the level crossing theory
appears to correctly predict both of the largest resonance
features observed in the data.

(a)

(b)

FIG. 4. (a) Fan diagram of the energy levels within an RWA
strip. Solid: Frequencies ω̄kðnÞ≡ Ejk;n−ki=ℏ − nωr versus pho-
ton number n for jΔj ¼ 1.4 GHz. As n increases, the levels repel
more strongly and fan out. Dashed: Same frequencies shifted by
2ωr, which represent the next-nearest neighboring RWA strip.
The red dots show energy resonances with the qubit state j0i
occurring at specific values of n. The left dot corresponds to the
resonance shown in Fig. 3. (b) Photon number at level crossing
versus ω10, compared between experiment and theory. Black
circles and blue squares show experimental features A and B from
Fig. 2, respectively, and the error bars represent the apparent
widths of the features. The solid red line is the theory prediction
for level crossing between eigenlevels of j0; ni and j6; n − 4i.
The dashed blue line is the theory prediction for an asymmetric
transmon that breaks the selection rule by at least 1%, yielding
level crossings between eigenlevels of j0; ni and j3; n − 2i.
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We note that any spurious TLS coupled to the transmon-
resonator system can also participate in level crossings, and
can lead to similar features [possibly the small peaks in
Fig. 2(c)], even at lower photon numbers [28].
In conclusion, we find that strong dispersivemeasurement

of a transmon induces transitions to states above j3i. These
transitions occur at specific values of the photon occupation
in the measurement resonator, and are caused by energy
resonances within the qubit-resonator system. Coupling
between the resonant levels is mediated by Hamiltonian
terms usually dropped in the rotating wave approximation,
and the most important such term involves an unexpected
broken symmetry in the transmon potential. An interesting
consequence of these results is that a systemwith smaller jΔj
should allow larger photon numbers before resonant tran-
sitions occur. This observation could be critical to improving
measurement accuracy in dispersively measured systems,
and may explain the large photon numbers used in Ref. [34].
This work suggests several further avenues of research:
characterizing level crossingswith the qubit initialized in j1i,
determining the mechanism for the transmon’s broken
symmetry, clarifying the role of TLSs in non-RWA tran-
sitions, and understanding the n-dependent rates of the non-
RWA transitions.
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