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Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental
problem, with implications for the foundations of quantum theory and for quantum information processing.
It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible
local measurements. Here we present a simple method for building LHV models, applicable to any
entangled state and considering continuous sets of measurements. This leads to a sequence of tests which,
in the limit, fully captures the set of quantum states admitting a LHVmodel. Similar methods are developed
for local hidden state models. We illustrate the practical relevance of these methods with several examples.
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Distant observers performing well-chosen local mea-
surements on a shared entangled state can establish non-
local correlations, as witnessed by the violation of a Bell
inequality [1,2]. Quantum nonlocality is among the most
counter-intuitive features of quantum physics, and is a key
resource in quantum information processing [3–5].
Initially believed to be two different facets of the same

phenomenon, entanglement and nonlocality are now rec-
ognized as fundamentally different. Notably, there exist
entangled states which cannot give rise to nonlocality
considering arbitrary (nonsequential) measurements. The
correlations of such states—thus referred to as “local”
entangled states—can be perfectly reproduced using a local
hidden variable (LHV) model, i.e., using only shared
classical resources. This was first demonstrated by
Werner [6], who presented a class of entangled states
which admit a LHV model for arbitrary projective mea-
surements. This was later extended to more general
positive-operator-valued measure (POVM) [7], and other
classes of states [8–11]. In particular, several works
[12–15] constructed local hidden state models (LHS), a
special class of LHV model in which the hidden variable
can be understood as a quantum state, naturally associated
to the effect of quantum steering [12]. More generally,
characterizing local entangled states would deepen our
understanding of the relation between entanglement and
nonlocality, as well as allow one to distinguish between
useful and useless entangled states for nonlocality-based
protocols.
Despite these implications, the problem of constructing

local models for entangled states remains challenging, as
the model should reproduce the quantum statistics for all
possible measurements, i.e., a continuous set. So far, LHV
(or LHS) models could be constructed for entangled states
featuring a high degree of symmetry [11]. Recently, a

sufficient condition for a two-qubit state to admit a LHS
was discussed [16]. However, for general states, essentially
nothing is known, due to the lack of appropriate techniques
for discussing the problem.
Here we present a simple and efficient method for

constructing LHVand LHS models, applicable to arbitrary
local entangled states and considering continuous sets of
measurements. The main idea is to map the problem of
finding a local model for an entangled state (a seemingly
infinite problem) to a finite (and, hence, tractable) problem,
namely, to find out whether the correlations resulting from
a finite set of measurements on a different entangled state
admit a local decomposition. We can define a sequence of
tests for determining whether a given entangled state admits
a LHV (or LHS) model, which is shown to converge in the
limit, and thus give a full characterization of the set of local
entangled states (see Fig. 1). The method can be efficiently
implemented, and we construct LHV and LHS models
for different classes of entangled states. In particular, we

FIG. 1. A method for constructing LHV models for entangled
states is discussed. This leads to a sequence of tests, which
provide in each level a better approximation of the set of local
states (red), a strict superset of the set of separable states (grey
region). This is complementary to standard methods, based, e.g.,
on Bell inequalities, which provide an approximation of the set of
local states from outside.
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present LHS models for a rank-3 entangled state and for a
bound entangled state. We conclude by discussing further
possible applications.
Preliminaries.—Consider Alice and Bob sharing an

entangled quantum state ρ. Alice performs a set of
measurements fMajxg (Majx ≥ 0 and

P
aMajx ¼ 1), and

Bob performs measurements fMbjyg. The resulting statis-
tics is given by

pðabjxyÞ ¼ TrðMajx ⊗ MbjyρÞ: ð1Þ
The state ρ is said to be local (for fMajxg and fMbjyg) if
distribution (1) admits a Bell local decomposition

pðabjxyÞ ¼
Z

πðλÞpAðajx; λÞpBðbjy; λÞdλ: ð2Þ

That is, the quantum statistics can be reproduced using a
LHVmodel consisting of a shared local (hidden) variable λ,
distributed with density πðλÞ, and local response functions
pAðajx; λÞ and pBðbjy; λÞ. If a decomposition of the form
(2) cannot be found, the distribution pðabjxyÞ violates (at
least) one Bell inequality [2]. In this case, ρ is nonlocal for
the sets fMajxg and fMbjyg.
Another concept of interest is that of a LHS model,

associated with quantum steering [12]. Specifically, we say
that ρ is “unsteerable” (from Alice to Bob) if

pðabjxyÞ ¼
Z

πðλÞpAðajx; λÞTrðMbjyσλÞdλ: ð3Þ

That is, the quantum statistics can be reproduced by a LHS
model, where σλ denotes the local (hidden) quantum state
and pAðajx; λÞ is Alice’s response function. If such a
decomposition cannot be found, ρ is said to be “steerable”
for the set fMajxg; note that one would usually consider
here a set of measurements Mbjy that is tomographically
complete, and thus focus the analysis on the set of condi-
tional states of Bob’s system

σajx ¼ TrAðMajx ⊗ 1ρÞ; ð4Þ
referred to as an assemblage. Note also that any LHS model
can be considered as an LHVmodel. The converse does not
necessarily hold, as there exist entangled states which are
steerable but nevertheless Bell local [12,15].
The problem of testing the locality or unsteerability of a

given entangled state ρ for finite sets of measurements
can be solved using existing methods, such as symmetric
extensions for quantum states [17], linear and semidefinite
programs (SDPs) [2,18,19], and relaxing positivity [20].
Implementable for small number of measurements, these
methods become computationally demanding when the
number of measurements increases. Nevertheless, they are
guaranteed to provide a solution in principle.
The situation is very different when considering con-

tinuous sets of measurements, e.g., the set of all projective
measurements. Here the methods for finite sets cannot be
applied, not even in principle. One must then construct a

LHV (or LHS) model explicitly, by exhibiting the distri-
butions πðλÞ and response functions pAðajx; λÞ and
pBðbjy; λÞ. This was achieved for certain classes of
entangled states by exploiting their high level of symmetry.
However, when considering general states, with less (or no)
symmetry, following such an approach is extremely
challenging.
In the present Letter, we follow a different path and

present a general method for constructing LHV and LHS
models for arbitrary states. The method can be efficiently
implemented and will be illustrated with examples. Before
presenting the main result we start with a simple example,
providing the intuition behind our method.
Illustrative example.—Consider the class of Werner

states

ρWðαÞ ¼ αjψ−ihψ−j þ ð1 − αÞ1=4; ð5Þ
where jψ−i ¼ ðj01i − j10iÞ= ffiffiffi

2
p

is the singlet state and 1=4
is the two-qubit maximally mixed state. In the range
1=3 < α ≤ 1=2, ρWðαÞ is entangled but unsteerable (and,
hence, local) for all projective measurements [6]. Werner
provided an explicit LHS model by exploiting the high
symmetry of the state—ρWðαÞ is invariant under global
rotations of the form U ⊗ U. Here we illustrate the main
idea behind our method by rederiving Werner’s result,
without invoking any symmetry argument.
Consider the set M of 6 projective qubit measurements

with Bloch vectors �v̂x (x ¼ 1;…; 6), corresponding to an
icosahedron. By performing measurements in M on the
Werner state, Alice prepares for Bob the assemblage

σ�jx ¼ TrA

�
1� v̂x · ~σ

2
⊗ 1ρWðαÞ

�
; ð6Þ

where ~σ denotes the vector of Pauli matrices. Using SDP
techniques [19], we find that this assemblage admits a LHS
model for α ≲ 0.54.
This analysis can be extended to all projective measure-

ments as follows. Consider qubit POVMs given by
Mη

�jv̂ ¼ ½1�ηðv̂ · ~σÞ�=2 with 0 < η ≤ 1. The corresponding
Bloch vectors (with direction v̂ and norm η) thus form
a “shrunken” Bloch sphere of radius η. Choosing

η� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ 2

ffiffiffi
5

p Þ=15
q

≈ 0.79, we obtain a sphere that

fits inside the icosahedron. Thus, any noisy measurement
Mη�

�jv̂ can be expressed as a convex combination of
measurements in M [21]. Because the assemblage (6)
(resulting from measurements in M) admits a LHS model
for α≲ 0.54, we get that the assemblage resulting from
any possible Mη

�jv̂ with η ≤ η� also admits a LHS model.
Consequently, the statistics of arbitrary (but sufficiently
noisy, i.e., η ≤ η�) measurements performed on the
Werner state with α≲ 0.54 can be simulated. Finally,
notice that the statistics of noisy measurements on a given
Werner state are equivalent to the statistics of projective
measurements on a slightly more noisy Werner state
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TrA½Mη
�jv̂ ⊗ 1ρWðαÞ� ¼ TrA½M1

�jv̂ ⊗ 1ρWðηαÞ�: ð7Þ

Hence, states ρWðαÞ with α ≲ 0.54η� ≃ 0.43 admit a LHS
model for all projective measurements. Note that by
starting from a polyhedron with more (but nevertheless
finitely many) vertices distributed (sufficiently evenly) over
the sphere, the above procedure gives a LHS model for
Werner states for α → 1=2, thus converging to Werner’s
model [21]. This is the optimal LHS model, because ρWðαÞ
becomes steerable for α > 1=2 [12].
Constructing LHS models.—Based on the idea sketched

above, we now present a general method for constructing
LHS models for continuous sets of measurements, appli-
cable to any local entangled state. Formally, we will make
use of the following result.
Lemma 1: Consider a quantum state χ (of dimension

d × d), with reduced states χA;B ¼ TrB;AðχÞ, and a finite
set of measurements fMajxg, such that the assemblage
σajx ¼ TrAðMajx ⊗ 1χÞ is unsteerable. Then the state

ρ ¼ ηχ þ ð1 − ηÞξA ⊗ χB; ð8Þ
where ξA is an arbitrary density matrix (of dimension d),
admits a LHS model for a continuous set of measurements
M. The parameter η corresponds to the “shrinking factor”
of M with respect to the finite set fMajxg (and given state
ξA). Specifically, consider the continuous set of (shrunk)
measurements

Mη
a ¼ ηMa þ ð1 − ηÞTr½ξAMa�1 ð9Þ

for any Ma ∈ M. Then η is the largest number such that
all Mη

a can be written as a convex combination of the
elements of fMajxg, i.e., Mη

a ¼
P

xpxMajx with
P

px ¼ 1
and px ≥ 0.
Proof.—The proof is based on the following relation:

TrA½Mη
a ⊗ 1χ� ¼ TrA½Ma ⊗ 1ρ�: ð10Þ

Because σajx is unsteerable, it follows that there exists a
LHS model for χ and all (shrunk) measurementsMη

a. From
the above equality, it follows that ρ admits a LHS model for
the continuous set of measurements M. □

This allows us to get an explicit protocol for determining
whether a given state ρ admits a LHS model.
Protocol 1: The problem is to determine if a target

state ρ admits a LHS model for a continuous set of
measurementsM. Following Lemma 1, we start by picking
a finite set fMajxg (with shrinking factor η) and a density
matrix ξA. Next we solve the following SDP problem:

find q� ¼maxq

such that

TrAðMajx ⊗ IχÞ ¼
X

λ

σλDλðajxÞ ∀ a;x;σλ ≥ 0 ∀ λ

ηχþ ð1− ηÞξA ⊗ χB ¼ qρþ ð1− qÞ 1
d2

; ð11Þ

where the optimization variables are (i) the positive matrices
σλ and (ii) ad × dHermitianmatrix χ [22]. This SDPmust be
performed considering all possible deterministic strategies
for AliceDλðajxÞ, of which there areN ¼ ðkAÞmA (wheremA
denotes the number of measurements of Alice and kA the
number of outcomes); hence λ ¼ 1;…; N. If the optimiza-
tion returns a maximum of q� ¼ 1, then ρ admits a
LHS model for all measurements inM. If q� < 1, we have
shown that ρ0 ¼ qρþ ð1 − qÞðI=d2Þ, with q ≤ q�, admits a
LHS for M.
The performance of the above protocol depends crucially

on the choice of the set fMajxg. It must be chosen in a rather
uniformmanner, over the continuous setM, in order to get a
shrinking factor that is as large as possible. Also, the ability
of the protocol to detect a larger range of unsteerable states
will improve when increasing the number of measurements
contained in fMajxg. Computing the shrinking factor is in
general nontrivial, but we give a general procedure in [23].
Based on Protocol 1, we can define a sequence of tests

for unsteerability of a given target state ρ. In the first test,
we consider a finite set fMajxg1, with shrinking factor η1
and apply Protocol 1. We thus get a value of q�1. If q

�
1 ¼ 1,

we conclude that ρ admits a LHS model. On the other hand,
if q�1 < 1, the test is inconclusive, and we must go to the
second level. We construct now a new set fMajxg2, which
includes all measurements in fMajxg1 and additional ones.
By adding sufficiently new measurements, we get a new
shrinking factor η2 > η1. Applying Protocol 1 again, we
may get a value of q�2 > q�1 [24]. If q�2 ¼ 1 we stop;
otherwise, we proceed to level 3, and so on.
Clearly, in each new test, the set of measurements

considered provides a better approximation to M.
Moreover, the sequence of tests will in fact converge in
the limit. Indeed, consider any state ρ admitting a LHS
model. Then, applying the method to ρ, we will be able to
show that there is a state ρ0, arbitrarily close to ρ, which
admits a LHS model. Specifically, for any ϵ > 0, the state
ρ ¼ ð1 − ϵÞρþ ϵð1=d2Þ will be detected by going to a
sufficiently high level in the sequence of tests (see
Supplemental Material [23]).
These ideas can be implemented on a standard computer

for small sets of measurements fMajxg. For larger sets, the
implementation becomes demanding. Nevertheless, the
method provides a definite answer in principle.
Constructing LHV models.—These ideas can also be

adapted to the problem of constructing LHV models.
Lemma 2: Consider a state χ (of dimension d × d),

with reduced states χA;B ¼ TrB;AðχÞ, and finite sets of
measurements fMajxg, fMbjyg such that pðabjxyÞ ¼
TrðMajx ⊗ MbjyχÞ is local. Then the state

ρ ¼ ημχ þ ηð1 − μÞχA ⊗ ξB þ μð1 − ηÞξA ⊗ χB

þ ð1 − ηÞð1 − μÞξA ⊗ ξB ð12Þ
admits a LHV model for the continuous sets of measure-
ments MA for Alice and MB for Bob. Here ξA, ξB are
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arbitrary density matrices (of dimension d), and η, μ denote
the shrinking factors of MA, MB with respect to fMajxg,
fMbjyg.
The proof is a straightforward extension of that of

Lemma 1. We now have the following protocol.
Protocol 2: The problem is whether a target state ρ

admits a LHV model for measurements in MA and MB.
Following Lemma 2, we take finite sets fMajxg and fMbjyg
(with shrinking factors η and μ) and density matrices ξA
and ξB. Then we solve the following linear problem:

find q� ¼ max q

such that

TrðMajx ⊗ MbjyχÞ ¼
X

λ

pλDλðabjxyÞ ∀ a; b; x; y

pλ ≥ 0 ∀ λ

qρþ ð1 − qÞ I
d
¼ ημχ þ ηð1 − μÞχA ⊗ ξB

þ μð1 − ηÞξA ⊗ χB þ ð1 − ηÞð1 − μÞξA ⊗ ξB; ð13Þ
where the optimization variables are (i) positive coefficients
pλ and (ii) a d × d Hermitian matrix χ [22]. GivenmA (mB)
measurements with kA (kB) outcomes for Alice (Bob),
one has N ¼ ðkAÞmAðkBÞmB local deterministic strategies
DλðabjxyÞ, and λ ¼ 1;…; N.
Again, this leads to a sequence of tests. In the first level,

consider finite sets fMajxg1 and fMbjyg1, with shrinking
factors η1 and μ1, and apply Protocol 2. If q�1 ¼ 1, we
conclude that ρ admits a LHVmodel. If q�1 < 1, we proceed
to the second level. We construct fMajxg2 and fMbjyg2,
including all measurements used in the first level plus
additional ones. Hence we get better shrinking factors
η2 ≥ η1 and μ2 ≥ μ1. Applying Protocol 2, we may get a
value of q�2 > q�1 [24]. If q

�
2 ¼ 1 we stop, otherwise we go

to level 3, and so on.
Here, the sequence will also converge in the limit.

Indeed, consider any local state ρ. There is ρ0, arbitrarily
close to ρ, which the method will show to have a LHV
model (see Supplemental Material [23]). Again, imple-
mentations on standard computers is possible for small sets
fMajxg and fMbjyg.
Applications.—We now illustrate the practical relevance

of the above methods, by constructing LHS and LHV
models for classes of entangled states for which previous
methods failed. A nontrivial issue is to obtain the shrinking
factor for the sets of measurements that are used. For
projective qubit measurements, this can be done efficiently
by exploiting the Bloch sphere geometry (see Supplemental
Material [23]). Hence, we consider entangled states where
(at least) one of the systems is a qubit, and focus primarily
on projective measurements.
Consider first the class of two-qubit states

ρðα; θÞ ¼ αjψθihψθj þ ð1 − αÞI4=4; ð14Þ

that is, partially entangled states jψθi¼cosθj00iþsinθj11i
mixed with white noise. The state is entangled for
α > ½1þ 2 sinð2θÞ�−1, via partial transposition [25,26].
Using Protocols 1 and 2, we find parameter ranges α, θ
where the state is unsteerable and local (seeFig. 2); thedetails
are in Supplemental Material [23]. So far, relevant bounds
for the locality of the above state were only given for
θ ¼ π=4, i.e., for Werner states (5). In this case, we obtain
an almost optimal LHS model (α≃ 0.495), and a LHV
model that improves Werner’s one (α≃ 0.554), but that is
below the model of Ref. [9] which achieved α≃ 0.659.
We also show that a rank-3 entangled state (i.e., on

the boundary of the set of two-qubit quantum states) can
admit a LHS model. Specifically, we find that the state
ρ ¼ P

3
k¼1 pkjψkihψkj, where p1 ¼ 0.4, p2 ¼ 0.05, and

jψ1i ¼ cos θj00i þ sin θj11i, jψ2i ¼ sin θj00i − cos θj11i
and jψ3i ¼ j10i, where θ ¼ 10−4π, admits a LHS model.
Next we discuss higher-dimensional states, of the form

ρðα; dÞ ¼ αjψ−ihψ−j þ ð1 − αÞ12=2 ⊗ 1d=d; ð15Þ
i.e., a two-qubit singlet state jψ−i mixed with higher-
dimensional noise. The above state is entangled for
α > ð1þ dÞ−1 (via partial transposition). We obtain lower
bounds on α (for d ≤ 5) for the state to admit a LHS model;
see Table I.
Moreover, we obtain a LHS model for the bound

entangled state of Ref. [27]; see [23]. While these states
were conjectured to be local [28], this result represents the
first explicit example. Note, however, that this conjecture
was recently disproven, as certain bound entangled states
can lead to steering [29] and Bell nonlocality [30].
These methods can also be applied to multipartite

entangled states. In particular, we could reproduce the
result of Ref. [31], constructing a LHV model for a genuine
tripartite entangled state.
Finally, we also applied our method considering general

POVMs on the two-qubit Werner state (5). In this case, we
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FIG. 2. The state ρðα; θÞ of Eq. (14) is entangled above the
dash-dotted (red) line. Our method guarantees unsteerability
below the solid blue line, while the state is steerable above
the dashed blue line. Moreover, we can guarantee that the state is
local below the solid black line, while it is nonlocal above the
dashed black line.
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obtain a LHS model for visibility α≃ 0.36 > 1=3, which
shows that the method can be applied in practice for general
POVMs [23].
Discussion.—We discussed a procedure for constructing

LHS or LHV models, applicable to any local entangled
state. The method can be used iteratively, and converges in
the limit. We illustrated its practical relevance.
We believe thesemethodswill find further applications, in

particular for exploring the relation between entanglement
and nonlocality. First, we note that a simplified version of
our method was recently used to demonstrate the effect of
postquantum steering [32]. More generally, the method can
be applied to systems of arbitrary dimension, considering
POVMs, and multipartite systems. Here the main technical
difficulty consists in obtaining shrinking factors for sets of
measurements beyond projective qubit ones.
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Note added.—Recently, we became aware of the related
work and complementary results by Cavalcanti and
colleagues [33].
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