
General Method for Constructing Local Hidden Variable Models for Entangled
Quantum States

D. Cavalcanti,1,* L. Guerini,1,2 R. Rabelo,2 and P. Skrzypczyk3,1
1ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

2Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 31270-901 Belo Horizonte,
Minas Gerais, Brazil

3H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
(Received 3 December 2015; published 4 November 2016)

Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-
independent quantum information protocols. However, not all entangled quantum states display non-
locality. A central question is to determine the precise relation between entanglement and nonlocality. Here
we present the first general test to decide whether a quantum state is local, and show that the test can be
implemented by semidefinite programing. This method can be applied to any given state and for the
construction of new examples of states with local hidden variable models for both projective and general
measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local
entangled states and present new explicit examples of such states, including those that arise from physical
noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
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Introduction.—Entanglement is one of the defining
properties of quantum theory, playing a central role in
quantum information science. One of the most astonishing
consequences of entanglement is that local measurements
on composite quantum systems can produce correlations
which are impossible to reproduce by any classical mecha-
nism satisfying natural notions of local causality [1]. Such
correlations are the key aspect behind the famous non-
locality of quantum theory, and they are witnessed by the
violation of Bell inequalities [2]. Witnessing nonlocality
certifies the entanglement of the underlying quantum state
in a way that makes no assumptions about the functioning
of the apparatuses used, a realization that led to the
development of the field of device-independent quantum
information.
Remarkably, as first shown byWerner [3], although every

entangled state needs a quantum channel to be distributed,
there exist entangled quantum states whose correlations can
be reproduced classically, because they are incapable of
displaying nonlocality. More precisely, Werner presented a
highly symmetric family of quantum states whose statistics
for all possible projective measurements could be repro-
duced by an ingenious classical model, referred to as a local-
hidden-variable (LHV) model. On the one hand, this shows
that the relation between entanglement and nonlocality is not
straightforward. On the other hand, it shows that not all
entangled states are useful for applications in device-
independent information processing. Since Werner’s origi-
nal result there have been a number of subsequent results
further elucidating the relation between entanglement and
nonlocality in terms of finding LHV models for other
families of states [4–9] (for a review, see [10]).

Nevertheless, it remains a difficult task to decide whether
a given entangled quantum state is nonlocal or not. This lies
in the fact that showing that a given state cannot lead to
nonlocal correlations requires showing that the statistics of
all measurements can be reproduced by a suitable LHV
model. Crucially, all constructions to date make use of the
symmetries present in the quantum states under scrutiny,
and, consequently, they cannot be readily applied to other
quantum states. In fact, apart from the very recent sufficient
condition for the special case of two-qubits (and one-sided
projective measurements) [11], there is no general criterion
to test whether a given quantum state is local.
Our main contribution here is to present sufficient

conditions for a general quantum state to admit a LHV
model, either for projective von Neumann measurements or
for general positive-operator-valued measure (POVM)
measurements, that can be tested via semidefinite program-
ming (SDP), an efficient form of convex optimization that
can be readily implemented in practice. We also show how
this method can be modified to provide a means to
randomly generate local quantum states. We show the
power of these tests by providing a lower-bound estimate
on the volume of the set of entangled two-qubit states that
possess LHV models for projective and POVM measure-
ments, and by presenting several examples of new local
entangled states, including those that would arise from
local amplitude-damping noise, two-qubit Bell diagonal
states, and three-qubit noisy Greenberger-Horne-Zeilinger
(GHZ) and W states. Our method focuses on a particular
class of LHV models, known as local-hidden-state (LHS)
models, which naturally arise in the context of quantum
steering [7,12], a concept closely related to nonlocality.
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An advantage of such models is that they automatically
imply a LHV model when one of the parties applies POVM
measurements. A disadvantage is that there exist entangled
states that admit LHVmodels but do not admit LHSmodels
[7,13]. As we will see in what follows, even with this
restriction, our tests are still strong enough to find models
for many interesting states.
Preliminaries.—Let us start by more precisely defining

LHV and LHS models. Suppose that Alice and Bob apply
local measurements defined by measurement operators
fMajxg and fMbjyg (x and y label measurement choices
and a and b outcomes) on a shared state ρAB. The set of
conditional probability distributions they observe is

Pða; bjx; yÞ ¼ tr½ðMajx ⊗ MbjyÞρAB�: ð1Þ

The state ρAB is said to have a LHV model for these
measurements if Pða; bjx; yÞ can be written as

Pða; bjx; yÞ ¼
Z

dλqðλÞPðajx; λÞPðbjy; λÞ; ð2Þ

where λ is the so-called shared local-hidden variable andR
dλqðλÞ ¼ 1. This decomposition can be thought as

coming from the following model: a classical variable λ
is randomly chosen according to the probability density
qðλÞ and sent to Alice and Bob. Upon receiving λ and
choosing their measurement, Alice and Bob output a and b
according to the distributions Pðajx; λÞ and Pðbjy; λÞ,
respectively. Of particular interest are the cases when
the sets fMajxg and fMbjyg contain either all projective
measurements or all POVM measurements.
A subclass of LHV models is that of LHS models. Let us

consider now that only Alice measures ρAB. The (un-
normalized) state on Bob’s side, conditioned on Alice
having observed the outcome a of measurement x, is

σajx ¼ trA½ðMajx ⊗ IBÞρAB�; ð3Þ

where tr½σajx� ¼ PðajxÞ is the probability that Alice obtains
the outcome a. If these postmeasurement states can be
written in the form

σajx ¼
Z

dλqðλÞPðajx; λÞρλ; ð4Þ

where ρλ ≥ 0, trρλ ¼ 1 for all λ, and
R
dλqðλÞ ¼ 1, ρAB is

said to have a LHS model for these measurements. It can be
easily checked that if Bob measures his share of the state
(4) with any set of POVM measurements, the probability
distributions observed will have the form (2). This means
that the existence of a LHS model implies a LHV model for
arbitrary POVM measurements on Bob’s side. Note that
LHS models are not as powerful as general LHV models;
there exist states that have a LHV model but no LHS
model [7,13].

Main results.—The main insight behind the following
theorems is to replace the problem of finding a LHS model
for a physical state and an infinite set of measurements with
that of finding a model for a nonphysical operator and a
finite set of measurements. As we will discuss afterwards,
this is a huge simplification that will allow us to test for
LHS models via SDP.
Theorem 1: (LHS model for projective measure-

ments) Let M be a finite collection of projective measure-
ments in CdA . A state ρAB acting on CdA ⊗ CdB admits a
LHS model for all projective measurements if there exists a
unit-trace operator OAB acting on the same Hilbert space,
such thatOAB admits a LHS model for the measurements in
M, and

ρAB ¼ rOAB þ ð1 − rÞ IA
dA

⊗ OB; ð5Þ

where r is the radius of the insphere [14] of the polytope
generated by M.
Here we prove this theorem for the case of dA ¼ 2.

A proof for arbitrary dA can be found in Ref. [15].
Proof.—Let M define a finite set of measurements

for Alice given by measurement operators Πajûx ¼½Iþ ð−1Þaûx·~σ�=2, where x ¼ 1;…; mA; a; b ∈ f0; 1g, ~σ ¼
ðσx; σy; σzÞ is the vector of Pauli operators and û a three-
dimensional unit vector. This measurement set can be
chosen arbitrarily, for example, in a regular fashion (along
the vertices or faces of a regular solid) or at random.
Suppose that these measurements, when applied to a given
operator OAB, have a LHS description of the form (4)

trA½ðΠajûx ⊗ IBÞOAB�

¼
Z

dλqðλÞPðajûx; λÞρλ; ∀ a; x: ð6Þ

Note that any set of measurements that can be performed as
a convex combination of the measurements in M also has
an LHS description. This is valid, in particular, for noisy
von Neumann measurements whose elements are contained
within a shrunken Bloch sphere completely contained
inside the convex hull of M (see Fig. 1). This sphere is

given by depolarized measurement operators ΠðrÞ
ajû ¼

rΠajû þ ð1 − rÞIA=2, where r is the radius of the insphere
of the polytope generated by the convex hull of M.
Finally, notice that

trA½ðΠðrÞ
ajû ⊗ IBÞOAB� ¼ trA½ðΠajû ⊗ IBÞρAB�; ð7Þ

assuming that ρAB ¼ rOAB þ ð1 − rÞIA=2 ⊗ OB. That is,
applying noisy measurements on an operator OAB is
equivalent, at the level of the states prepared for Bob, to
applying noise-free measurements on a noisy version of
OAB, denoted here as ρAB. Therefore, if OAB admits a LHS
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model for the set M, then it also does for the set fΠðrÞ
ajûg,

which implies that ρAB admits a LHS model for all
projective measurements. □

Note first that the operator OAB need not to be a valid
density operator; it can have negative eigenvalues. The
requirements onOAB are that it has unit trace, admits a LHS
model for the measurements in M, and that it becomes
equal to ρAB when depolarized. Note also that in the case
that M is the (infinite) set of all projective measurements,
then this is precisely a brute-force test for the existence of a
LHS model. Thus, our method can be seen to provide a
sequence of tests (or sufficient conditions), in terms of the
set M, for a state to have a LHS model, which in the limit
converges to the brute-force test.
To further generalize this result to accommodate general

POVMs, we can make use of a result from Ref. [9] that if
ρAB has a LHS model for projective measurements, then the
state ρ0AB ¼ ð1=dAÞρAB þ ð1 − 1=dAÞγA ⊗ ρB has a LHS
model for all POVMs, where dA is the local Hilbert space
dimension of Alice and γA is an arbitrary state [21].
Combining this result with the above theorem, we obtain
the following.
Theorem 2: [LHS for POVM measurements] A state

ρAB acting on CdA ⊗ CdB admits a LHS model for all
POVMs if there exists an operator OAB that admits a LHS
model for M such that

ρAB ¼ 1

dA

�
rOAB þ ð1 − rÞ IA

dA
⊗ OB

�

þ dA − 1

dA
γA ⊗ OB; ð8Þ

where γA is an arbitrary state.

Note, however, that unlike in the previous case, which
became a brute-force search for the existence of a LHS
model for all projective measurements in an appropriate
limit, this test provides only a sufficient criteria.
Both theorems can be easily adapted to the case of LHV

models by applying the same ideas to Bob’s system [22].
That is, one can also choose a set of measurements for Bob,
compute the corresponding radius rB, impose that Alice’s
and Bob’s measurements generate local probability distri-
butions, and locally depolarize according to Alice’s and
Bob’s shrinking factors.
SDP formulation.—We now provide explicit SDP for-

mulations of Theorems 1 and 2. We start by choosing a
finite set of measurements M and calculating r, given by
the distance between the closest facet of the polytope
generated by M and the origin, which can easily be
computed by standard vertex enumeration algorithms
[23,24]. Because M is finite, we can restrict to a finite
set of hidden variables [25] when imposing a LHS model
for the operator OAB. Without loss of generality we take
λ ¼ λ1;…; λmA

to be a mA-length bit string, which specifies
a (deterministic) outcome for each of themA measurements
of Alice: a ¼ λx when the measurement along direction ûx
is performed. There are dmA distinct deterministic specifi-
cations. Thus, according to Theorem 1, the following SDP
tests for the existence of a LHS model for projective
measurements on the state ρAB:

given ρAB;M; r

find OAB; fρλgλ
such that trA½ðΠajûx ⊗ IBÞOAB� ¼

X
λ

DλðajxÞρλ; ∀ a; x

ρλ ≥ 0; ∀ λ

rOAB þ ð1 − rÞ IA
dA

⊗ OB ¼ ρAB; ð9Þ

whereDλðajxÞ ¼ δa;λx are deterministic response functions.
Following Theorem 2, we can substitute the last con-

straint in the above SDP by Eq. (8) to test, with a given γA,
for the existence of a LHS model for all POVM measure-
ments. These programs can also be adapted to test families
of states ρðwÞ that depend linearly on a parameter w (e.g.,
Werner states): instead of running the feasibility problem
(9) one can maximize (or minimize) w subject to the same
constraints. This finds the value w� such that for all w ≤ w�,
states within the family have a LHS model.
Extensions.—The previous methods extend to multipar-

tite states in a rather straightforward way. In particular,
extending B → B1 ⊗ � � � ⊗ Bk, we demand in addition that
each ρλ in (9) (now an operator on HB1

⊗ � � � ⊗ HBk
) is a

fully separable state. This is easily seen to provide a LHV
model where each Bob can perform arbitrary POVM
measurements. Note that although imposing separability
is in general difficult, for the case where Bob holds two

FIG. 1. Diagrammatic representation of the method (restricted
to two dimensions for illustrative purposes). The vectors �ûx are
the Bloch vectors corresponding to each of the measurements
from the set M. The area enclosed by the dashed lines is the
polytope that these measurements form. Any measurement
contained inside this polytope can be simulated by appropriately
mixing the LHS model that simulates the measurements in M.
The shaded circle, of radius r, is the largest circle which is
completely contained in the convex hull, and contains all noisy
projective measurements ΠðrÞ

ajû.
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qubits, imposing positive partial transpose is sufficient. In
the case of higher-dimensional systems, although in prin-
ciple the above method still applies, the number of
measurements necessary to generate a polytope with a
large insphere grows quickly with dA (which is necessary to
keep the amount of noise low). This implies that the above
SDPs become too costly to be used in practice.
Example 1.—As an illustration of the technique, we

first investigate Bell diagonal states, given by ρBell ¼P
ipijΨiihΨij, where jΨii are the four Bell states,

pi ≥ 0, and
P

ipi ¼ 1 have LHS models. In this case
we adapted the SDP (9) to maximize p1 provided the same
constraints. We find p1 ≈ 0.4454, and p2 ¼ p3 ¼ p4 ¼
ð1 − p1Þ=3, which is a Werner state, using M along the
vertices of the rhombicuboctahedron, an Archimedean
solid with 24 vertices. Notice that the analytical construc-
tion of Werner [3] provides a model for p1 ≤ 1=2; thus,
with 12 measurements our method already recaptures
≈89% of LHS Werner states. We also looked at rank-3
Bell diagonal states, by setting p4 ¼ 0, and found the
largest p1 equal to 0.5664, with the same M.
Example 2.—As amore physical example, we consider an

initial maximally entangled state jΦþi ¼ ðj00i þ j11iÞ= ffiffiffi
2

p
undergoing independent local amplitude damping given by
the evolution ρðtÞ ¼ P

i;jEi ⊗ Ejρð0ÞE†
i ⊗ E†

j , defined by

the Kraus operators E0 ¼ j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−γt

p j1ih1j and
E1 ¼

ffiffiffiffiffiffiffiffi
e−γt

p j0ih1j. This noise model is used to describe
spontaneous decay of two-level systems [26] and is par-
ticularly relevant for atomicBell experiments [27,28].While
the evolved state becomes separable only asymptotically
(i.e., for t → ∞), we found it to have a LHS model for
all γt≳ − ln 0.60.
Example 3.—Finally, we consider noisy 3-qubit GHZ

and W states given by ρðpÞ ¼ pjψihψ j þ ð1 − pÞI=8,
where jψi¼jGHZi≔ðj000iþj111iÞ= ffiffiffi

2
p

or jψi ¼ jWi ≔
ðj001i þ j010i þ j100iÞ= ffiffiffi

3
p

. These states are fully sepa-
rable for p ≤ 0.2 and p ≤ 0.2096, respectively. With M
corresponding to the rhombicuboctahedron, we found
that these states admit LHS models for projective mea-
surements for p ≤ 0.232 and p ≤ 0.228, respectively.
Generating entangled states with LHS models.—A

complementary problem to the one of deciding if a target
state is local is the generatation of local entangled states.
Furthermore, it is also interesting to generate local states
that contain as much entanglement as possible. To this end,
we make use of the concept of entanglement witnesses.
Entanglement witnesses are Hermitian operators W for

which a negative expectation value for the state ρAB,
tr½WρAB� < 0, certifies that it is entangled. As shown in
Refs. [17,29], if W has additional appropriate structure, the
absolute value of this negative expectation value also
provides a lower bound on the amount of entanglement
of ρAB, i.e., EðρABÞ ≥ −tr½WρAB�. Finally, such entangle-
ment witnesses themselves can be obtained through simple

SDPs, where by imposing the different constraints onW we
obtain estimators for different entanglement quantifiers
EðρABÞ [15,17,29].
We now propose a method to generate entangled states

with LHS models and high entanglement. We start with a
given witnessW (obtained via SDP). As before, we choose
a set of measurements M and compute the radius of the
insphere r. We now search for the state which maximally
violates the witness and has a LHS model for projective
measurements by solving the following SDP:

min
OAB;ρλ

tr

�
W

�
rOAB þ ð1 − rÞ IA

dA
⊗ OB

��

such that trA½ðΠajûx ⊗ IBÞOAB� ¼
X
λ

DλðajxÞρλ; ∀ a; x

ρλ ≥ 0; ∀ λ; tr½OAB� ¼ 1;

rOAB þ ð1 − rÞ IA
dA

⊗ OB ≥ 0: ð10Þ

If the solution of this SDP is negative, then the minimizing
operator ρ�AB¼rO�

ABþð1−rÞðIA=dAÞ⊗O�
B is an entangled

state which has a LHS model: entanglement is guaranteed
by the violation of the witness and the fact it has a LHS
model is imposed by the constraints of the SDP.
Once we find an example of a LHS entangled state ρ�AB,

we can iterate this procedure and find new examples with
more entanglement: we find the entanglement witness W�
that is optimal for the state ρ�AB and useW� in the SDP (10)
to find a new state ρ��AB, which is generally more entangled
according to the chosen quantifier. This procedure can then
be iterated until it converges [30]. Note that different
quantifiers of entanglement have different properties,
and, thus, exploring a number of different quantifiers
can provide LHS states with different properties. Finally,
as before, we can adapt (10) according to Eq. (8) to find
examples of entangled states with LHS models for all
POVM measurements.
Using this method, we generated a large list of bipartite

entangled states that have LHS models for projective and
POVM measurements [31]. In Ref. [15] we analyze these
examples in terms of their entanglement content and other
relevant parameters. Finally, by using entanglement wit-
nesses that detect genuine multipartite entanglement [20],
we were also able to obtain new examples of genuine
tripartite entangled 3-qubit states with LHS models for
projective measurements. To the best of our knowledge,
only two examples were previously known [32,33].
Estimating the volume of LHS states.—The previous

programs can be directly applied to provide a lower bound
on the relative volume of the set of entangled states that
admit LHS models. We uniformly sampled 2 × 104 2-qubit
states according to the Hilbert-Schmidt and Bures mea-
sures, for which we obtained ≈23% and ≈7% separable
states, respectively, in good accordance with the values of
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24.2% and 7.3% obtained from geometrical arguments
[34]. We then applied the above SDPs to estimate how
many of the entangled states admit LHS models [35]. With
the measurements M chosen to be the vertices of the
icosahedron (r ≈ 0.79), we obtain that ≳25% of the
entangled states sampled according to the Hilbert-
Schmidt measure admit LHS models, while ≳7% admit
LHS models using the Bures measure. We were not able to
obtain any entangled state admitting LHS models for
POVMs by applying the same technique with measure-
ments given by the icosahedron. A better estimation of the
volume of the set of local states could be obtained, both for
projective measurements and POVMs, by considering more
measurements in the set M.
Discussion.—Not all entangled quantum states exhibit

nonlocality—the strongest signature of their inseparability.
Understanding the relation between nonlocality and entan-
glement is an important problem, and it has been notoriously
difficult to find general-purpose methods for determining
which entangled states are local. In this Letter we have
presented a criterion for a state to admit a LHS model for
projective or general measurements. Although LHS models
are only a subset of general LHV models, we have demon-
strated the power of our criteria by finding new physical
examples of multipartite entangled states that are local.
We also showed how our work naturally provides a

method to generate examples of entangled local states; we
used it to give the first estimate of the relative volume of the
set of entangled 2-qubit states that admit LHS models,
showing that a significant fraction of them in fact do so. As
a consequence, our results provide a lower bound for the
fraction of states that are useless as resources for any
device-independent quantum information processing task.
Our method works particularly well for projective

measurements on 2- or multiqubit states, becoming equal
to a brute-force search in the appropriate limit. In [22] it
was further shown how a variant of the above methods
provides necessary and sufficient criteria for general
POVM measurements in the limit. It would be interesting,
in future work, to build upon the general methods presented
here to provide practical tests for higher-dimensional and
multipartite systems.
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Note added.—We recently became aware of a complemen-
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