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We demonstrate that interactions can substantially undermine the free-particle description of magnons
in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the
Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong,
nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for
the S ¼ 1=2 ferromagnet on the kagome lattice and propose further experiments.
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Theoretical proposals and experimental discoveries of
electronic topological materials having bulk bands with
nonzero topological invariants and protected edge states
[1,2] have lead to an active search for similar effects in
systems with different quasiparticles [3–5]. Among the
latter are magnon excitations in ferromagnets on frustrated
lattices, with several materials identified, synthesized, and
studied since the original proposal [5–9].
Simple Heisenberg ferromagnets have a classical, fully

polarized ground state and their excitation spectra are
affected by quantum effects only at a finite temperature
[10], regardless of the underlying lattice. However, the
lower symmetries of the geometrically frustrated lattices,
such as kagome and pyrochlore, allow for a rather signifi-
cant Dzyaloshinskii-Moriya (DM) interaction [8,9]. While
in their simplest form, the DM terms are frustrated, leaving
the fully saturated ferromagnetic ground state intact, such a
protection does not hold for the excited states. Instead, the
DM interaction generates complex hopping amplitudes for
the spin flips that translate into fluxes of fictitious fields, see
Fig. 1(a), leading to Berry curvature of magnon bands.
Among the consequences of this band transformation are
unusual transport phenomena such as magnon Hall and
spin Nernst effects [5–7,11–14].
On closer inspection, the sought-after nontrivial topo-

logical character of magnon bands is intimately tied to
several aspects of the underlying structures. In particular,
their non-Bravias lattices necessarily host optical magnon
branches, while the geometrically frustrating lattice top-
ology favors underconstrained couplings that result in the
“flat” excitation branches featuring degeneracy points with
the dispersive magnon bands; see Fig. 1(b). This degen-
eracy is lifted by the DM interaction, giving rise to the
Berry curvature of the bands, which is responsible for
nontrivial transport properties.
It has also been suggested that, in a minimal model, the

topology of the bands can be “tuned” by manipulating the
direction of magnetization [9,14]. Using a small field to
change the mutual orientation of magnetization M and
DM vector D fromM∥D toM ⊥ D, one formally turns the

DM-induced complex hoppings and the concomitant topo-
logical effects from “on” to “off” [9].
We point out that in all these constructions, an idealized,

noninteracting free-boson description of magnons is simply
taken for granted [11,12,15]. Below we demonstrate that
such a free-quasiparticle picture of magnons in ferromag-
nets on the geometrically frustrated lattices is missing a
crucial physical effect, which, in turn, challenges conclu-
sions reached within the idealized picture.
The key idea is that, forM∦D, the DM interaction is also

a source of the anharmonic, particle-nonconserving cou-
pling of magnons. The coupling is hidden for the ground
state, but not for excitations, similarly to the complex
hopping effect. Its most important outcome is a significant,
nonperturbative damping of the flat and dispersive optical
modes in the proximity of their degeneracy point, the effect
precipitated by the divergent density of states in the two-
magnon continuum. The resultant broadening at k → 0 is
proportional to the first power of the DM term, Γ ∝ jDj,
same as the band-splitting effect for M∥D. Interestingly, a
sizable broadening has been noted as an unexpected result
in a recent study of the kagome-lattice ferromagnet,
Cuð1–3; bdcÞ; see Ref. [9].
Model and magnon interaction.—The nearest-neighbor

model of a ferromagnet with the DM term is
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FIG. 1. (a) A ground state of (1) with Dij ¼ Dẑ; arrows on
bonds show ordering of Si and Sj in the DM term with fictitious
fluxes indicated. (b) Magnon bands along the KΓMK path for
D ¼ 0 (solid line) and for D=J ¼ 0.3 with M∥D (dashed line).

PRL 117, 187203 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

0031-9007=16=117(18)=187203(5) 187203-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.187203
http://dx.doi.org/10.1103/PhysRevLett.117.187203
http://dx.doi.org/10.1103/PhysRevLett.117.187203
http://dx.doi.org/10.1103/PhysRevLett.117.187203


Ĥ ¼ −J
X

hiji
Si · Sj þ

X

hiji
Dij · ðSi × SjÞ; ð1Þ

where J > 0, hiji runs over bonds of the kagome lattice,
and Fig. 1(a) shows the order of i and j in the DM term; see
[16]. While the DM interaction in the kagome lattice can
have both in- and out-of-plane components, the latter is
dominant [17,18]. In the following, we consider
Hamiltonian (1) with Dij ¼ Dẑ as a minimal model that
illustrates a dramatic effect of magnon interactions.
Usually, the out-of-plane DM coupling would favor a

canted in-plane order of spins with reduced magnetic
moment due to quantum fluctuations in the ground state
[19]. However, for ferromagnets on the geometrically
frustrated lattices it is the DM term that is frustrated.
Thus, counterintuitively, magnetization remains fully satu-
rated, jMj ¼ SN, regardless of its orientation with respect
to D. This is because the mean-field tug of the DM
interactions on a given spin from its neighbors vanishes
identically due to its cancellation from different bonds; see
Fig. 1(a). For the same reason, the DM term cannot
generate fluctuations in the saturated ground state. One
can immediately see that the same is not true for magnon
excitations, because spin flips violate cancellation of the
DM contributions from different bonds. Therefore, while
the ground state is insensitive to the DM interaction, the
spectrum is not.
For the uniform out-of-plane D, there are two principal

directions for magnetization: M∥D and M ⊥ D. The
former case has been thoroughly examined within the
linear spin-wave theory (LSWT) [5–9,11–14] and we
summarize it here briefly. Choosing the spin-quantization
axis ẑ∥M∥D one can straightforwardly rewrite (1) as

Ĥ ¼ −J
X

hiji
SziS

z
j −

1

2

X

hiji
ðJ Sþi S

−
j þ J �S−i S

þ
j Þ; ð2Þ

where J ¼ J − iD and the DM term provides an imaginary
component to the spin-flip hoppings. Taking into account
lattice geometry, rewriting spin flips as bosons, and
diagonalizing the corresponding 3 × 3 matrix for the
kagome unit cell yields the harmonic-order, LSWT
Hamiltonian

Ĥð2Þ ¼
X

ν;k

εν;kb
†
ν;kbν;k; ð3Þ

where the three magnon branches, εν;k, are depicted in
Fig. 1(b) for a representative value ofD; see [16] for details.
The main outcomes of the DM term are the gaps at the
degeneracy points of the DM-free model, Δ ∝ jDj, and the
Berry curvature of the bands due to fictitious fields
generated by complex hoppings [5,12,13]. It is clear that
this procedure can be generalized to an arbitrary angle θ
between M and D by simply replacing D → D cos θ in J

above. This immediately implies that for M ⊥ D the
complex hoppings cease completely and magnon bands
should become free of the DM interaction, i.e., equivalent
to the D ¼ 0 picture in Fig. 1(b).
A flaw in this reasoning is in the harmonic approxima-

tion. Although for M ⊥ D the DM interaction does not
contribute to the LSWT, it does not disappear. For the
quantization axis ẑ∥M ⊥ D, the DM term becomes

ĤDM ¼ D
2

X

hiji
½ðSþi þ S−i ÞSzj − Szi ðSþj þ S−j Þ�; ð4Þ

which indeed does not affect the ground state or harmonic
theory. However, it gives rise to anharmonic interaction of
magnons [20] as it creates or annihilates a spin-flip in a
proximity of another spin flip, with contributions from the
nearest bonds not cancelling out. Thus, transitions are
generated between single- and two-magnon states, which
can lead to renormalization of the bands and, most
importantly, to magnon damping.
With the formal details given in [16], the resultant cubic

interaction of magnons obtained from (4) is [21]

Ĥð3Þ
DM ¼ D

2!

ffiffiffiffiffiffi
2S
N

r X

k;q

X

νμη

~Φνμη
qk;pb

†
ν;qb

†
μ;kbη;p þ H:c:; ð5Þ

with the vertex ~Φνμη
qk;p ¼ Fνμη

qkp þ Fμνη
kqp and the amplitude

Fνμη
qkp ¼

X

αβ

ϵαβγ cosðqβαÞwν;αðqÞwμ;βðkÞwη;βðpÞ; ð6Þ

where wν ¼ ðwν;1; wν;2; wν;3Þ are the eigenvectors of the
3 × 3 matrix diagonalized for the harmonic theory. A
generalization of this consideration to an arbitrary M−D
angle is achieved by D → D sin θ in (4) and (5), also
keeping in mind that the eigenvectors wν in (6) change with
D cos θ according to the diagonalization leading to (3).
Thus, the harmonic and the anharmonic Hamiltonians (3)
and (5) complement each other for any θ ≠ 0.
We note that at T ¼ 0, the four-magnon terms do not

directly affect the spectrum of the model (1) as they
necessarily have a b†b†bb form [16,22].
Kinematics and two-magnon DoS.—Because the anhar-

monic term (5) provides a coupling of the single-particle
branches with the two-magnon continuum, the properties
of the latter are of interest. Consider M ⊥ D. From the
point of view of the harmonic theory, magnon bands are not
affected by the DM term, see Fig. 2, with the flat band
(mode 1) degenerate with the dispersive band (mode 3) at
the Γ point. Crucially, the two-magnon continuum is highly
degenerate at this point because of a ubiquitous property of
the magnon spectra of ferromagnets on the non-Bravais
lattices. Namely, the two dispersive modes are mirror
reflections of each other with respect to their energy at
the K point, which is also precisely one half of the flat
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mode energy; see Fig. 2. One can easily check that the same
structure persists for the pyrochlore and honeycomb lattices
[8,23,24]. Because of that property, the condition ε1 ¼
ε2;q þ ε3;−q is met for any value of the momentum q [24].
This is a much higher degeneracy than the ones leading to
more traditional van Hove singularities of the two-magnon
continua [20].
A useful quantitative characteristic of the continuum is

the on-shell,ω ¼ εμ;k, two-magnon density of states (DoS),
which is also a proxy of the on-shell decay rate

Dð2Þ
μ;k ¼ π

X

q;νη

δðεμ;k − εν;q − εη;k−qÞ; ð7Þ

shown in Fig. 2 for the flat mode, μ ¼ 1, vs k. It exhibits a
strong 1=jkj divergence at k → 0 due to the high degen-
eracy in the two-magnon continuum discussed above. The
divergent behavior at k → 0 is identical for μ ¼ 3 [16].
This consideration implies that an arbitrary weak cou-

pling of the single-magnon and two-magnon states com-
pletely invalidates predictions of the harmonic theory by
causing a divergent damping in the optical magnons at
k → 0. As is shown below, a self-consistent treatment
regularizes this divergence but leaves an anomalously large,
nonanalytic and nonperturbative damping, Γ ∝ jDj, for
both optical magnon modes near the Γ point and in a
broad range of jkj≲D=J also controlled by D.
Decays and regularization.—One can expect the on-

shell decay rate of a magnon due to cubic terms (5)

Γμ;k ¼ πSD2

N

X

q;νη

j ~Φνημ
q;k−q;kj2δðεμ;k − εν;q − εη;k−qÞ ð8Þ

to be small for realistic parameters as it is ∝ D2=J. This is
indeed the case for the Goldstone branch (mode 2), for
which damping is also suppressed kinematically except for
large momenta [16]. However, because of the degeneracy
of the two-magnon DoS, damping (8) of the mode 3 is
divergent as 1=jkj, thus suggesting a much stronger effect.

The situation is less conspicuous for the flat mode, as the
expected similar divergence in (8) is preempted by a subtle
cancellation in the vertex, leading to a finite, OðD2Þ,
damping at k → 0 [16]. However, this cancellation is lifted
in the off-shell consideration, which, counterintuitively,
leads to a strongly enhanced decay rate of the flat mode in
the self-consistent treatment. We note that the real part of
the same self-energy [25] also diverges for both optical
magnon modes, but its divergence is much weaker
[16], ReΣμ;k ∝ ln jkj.
A regularization of the divergencies is achieved via a

self-consistent solution of the Dyson’s equation (DE),
which naturally accounts for the damping of the initial-
state magnon, ω − εμ;k − Σμ;kðω�Þ ¼ 0, where Σμ;kðωÞ is
the self-energy due to cubic terms and the complex
conjugate ω� respects causality; see [26]. The real and
imaginary parts of this equation have to be solved together.
However, once the initial-state damping is introduced, the
weak divergence in the real part will be cut [26]. Therefore,
for small d ¼ D=J, it will constitute a small energy
correction, ∝ d2 ln jdj, neglecting which yields an
“imaginary-only” Dyson’s equation, which we coin as
iDE: Γμ;k ¼ −ImΣμ;kðεμ;k þ iΓμ;kÞ, or, explicitly

1 ¼ SD2

N

X

q;νη

j ~Φνημ
q;k−q;kj2

ðεμ;k − εν;q − εη;k−qÞ2 þ Γ2
μ;k

: ð9Þ

With the numerical results for the iDE to follow, its key
result can be appreciated. At small jkj, the difference of
magnon energies in (9) for the divergent decay channels
μ→f2;3g is negligible, giving: Γμ;k→0≈jDj ffiffiffi

S
p

. Physically,
the “fuzziness” of the initial-state magnon removes strict
energy-momentum conservations in the decay process,
regularizing the divergencies.
This constitutes the main result of the iDE regularization.

The decay rate of both flat and gapped modes forM ⊥ D at
k → 0 is given by a nonperturbative answer, Γ1ð3Þ;k ∝ jDj,
strongly enhanced compared to the perturbative expect-
ations. The k region in which the broadening is strongly
enhanced can be easily estimated as jkj≲ jk�j ∝ jDj=J
with the damping decreasing to the perturbative values,
Γ3ð1Þ;k ∝ D2=J, for jkj≳ jk�j.
The numerical solutions of the iDE (9) for damping Γk

for all three magnon modes for S ¼ 1=2 andD=J ¼ 0.3 are
shown in Fig. 3 along the KΓMK path. One can see that,
indeed, the damping is strongly enhanced in the jkj ≲
jDj=J region around the Γ point for the flat and dispersive
optical modes; see also [16] for other values of D=J. The
inset shows the full width of magnon spectral lines at half-
maximum, εk � Γk, to demonstrate effects of the broad-
ening on the magnon spectrum. One can also see that the
decay rates of modes 1 and 3 at k ¼ 0 coincide because of
the symmetry of the cubic vertices [16]. Some remnants of
the more conventional, logarithmic van Hove singularities
[20] can be seen in both Figs. 3 and 4.
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Inset: schematics of a magnon decay from k ¼ 0.
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Angular dependence.—Since magnetization is not
pinned for model (1), one can manipulate its direction.
Then, the natural question is, how does one transition from
the well-defined excitations with the gap ∝ D to the
broadened excitations with the widths ∝ D as a function
of the M −D angle θ?
For θ < π=2, magnetization is partially along D and

magnon bands split due to complex hoppings (∼ cos θ),
while cubic interaction in (5) is reduced (∼ sin θ) as
described above. The main complication is that, for
M⊥D, the eigenvectors in the vertices (6), wν, are not
derivable analytically in a compact form [27], and have to
be obtained numerically from diagonalization of the 3 × 3
matrix [16]. Physically, the band splitting also contributes
to regularization of singularities in magnon decays.
In Fig. 4, we provide detailed predictions for the angular

dependence of the damping of the optical magnon modes
obtained from iDE (9). Figure 4(a) shows a gradual
decrease of the broadening for both modes at k ¼ 0 from
its maximal value to zero upon the decrease of the angle θ,
with the insets showing Γμ;k along the KΓM path for
several values of the angle. Figure 4(b) presents the 2D
intensity plots of the broadening of the mode 3 in k space
for three different angles. These results complement the
data in Figs. 3 and 4(a) and demonstrate a rather dramatic
distribution of the broadening in the Brillouin zone and its
nontrivial evolution with the angle. This detailed picture is
completed in Fig. 4(c) by the k − θ intensity maps of the
broadening for both optical modes along the KΓM path.
They reveal an interesting contribution of the conventional
van Hove singularities of the two-magnon continuum and
highlight an unusual evolution of the magnon linewidth.
Our minimal-model consideration may seem to imply

that there is always a special direction of M that can allow
one to switch off cubic anharmonic coupling and associated
decay effects. However, in a more general and realistic
setting, the DM term has both in- and out-of-plane
components [8,9], making magnon decays inevitable. It
is, thus, imperative to take their effects into account in a
consideration of magnon bands in real materials.

Experiments.—Experimental evidence of the broadening
of the flat mode in the vicinity of k ¼ 0 has been recently
reported for a kagome-lattice ferromagnet with Dz=J ≈
0.15 [9]. ForM ⊥ D, the broadening varying from 0.05J in
external field to 0.13J in zero field was suggested; see
Supplemental Material of [9]. Our consideration yields the
broadening of both optical modes of a somewhat lesser
value of 0.09J in zero field [16]. One can suggest that a
larger broadening can be registered due to the overlap of the
two modes. Other experimental factors that can affect a
direct comparison include averaging of the data over a
range of k and contributions of the in-plane DM compo-
nents to decays. The close agreement with the available
data and our detailed predictions above call for a closer
experimental analysis of the suggested dramatic broad-
ening effects. They can be tested by the neutron scattering,
resonant neutron-scattering spin echo, and by electron spin
resonance spectroscopy.
Summary.—We demonstrated that the idea of noninter-

acting topologically nontrivial bands, familiar fromfermionic
systems, cannot be trivially transplanted to bosonic systems
such as ferromagnets on the geometrically frustrated lattices.
The key difference is in the particle-nonconserving terms that
are generated by the same interactions that are necessary for
the sought-after Berry curvature of the bands. These terms,
combined with a ubiquitous degeneracy of the two-magnon
continuum, produce a substantial broadening of magnon
bands precisely in the ranges ofk andω that are essential for
the topological properties to occur, thus potentially under-
mining the entire free-band consideration. The same phe-
nomena should be common to ultracold atomic, phononlike,
and other bosonic systems. How the topologically nontrivial
properties of the bands can be defined in the presence of a
substantial broadening remains an open question.
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