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We show that a Fermi surface reconstruction due to spiral antiferromagnetic order may explain the
rapid change in the Hall number as recently observed near optimal doping in cuprate superconductors
[Badoux et al., Nature (London) 531, 210 (2016)]. The single-particle spectral function in the spiral state
exhibits hole pockets which look like Fermi arcs due to a strong momentum dependence of the spectral
weight. Adding charge-density wave order further reduces the Fermi surface to a single electron pocket.
We propose quantum oscillation measurements to distinguish between commensurate and spiral
antiferromagnetic order. Similar results apply to certain metals in which topological order replaces
antiferromagnetic order.
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Introduction.—Cuprate superconductors evolve from a
Mott insulator to a correlated metal with increasing hole
doping p. Long ago it was suggested that this evolution
involves a quantum critical point (QCP) near optimal
doping, and that the associated fluctuations are responsible
for the high critical temperature for superconductivity
[1–3]. The existence and nature of this QCP has not been
clarified yet, because it is masked by superconductivity.
Recently, the normal ground state became accessible by
suppressing superconductivity with high magnetic fields.
Near optimal doping in YBCO, Badoux et al. reported a
rapid change of the Hall number nH ¼ ðRHeÞ−1 with
doping [4]. A similar behavior consistent with a drastic
drop of the charge carrier density upon lowering the doping
was found shortly after in the Hall number and the
resistivity of several cuprate materials [5,6]. These results
suggest that a QCP at optimal doping is associated with the
reconstruction of a large Fermi surface enclosing a volume
corresponding to a density 1þ p of empty states (holes) at
large doping, to small pockets with a volume corresponding
to a hole-density p in the underdoped regime. Moreover,
these experiments indicate that the QCP for the closing of
the pseudogap [4,7] is distinct from that for the disappear-
ance of charge order [8].
The observed transition in the charge carrier density could

be associated with the termination of novel pseudogap
metals without magnetic order [9–12] or a QCP at which
charge-density wave (CDW) [13] or Néel-type antiferro-
magnetic (AF) [14] order disappears. However, there is
experimental evidence at least for YBCO that magnetic
order in the ground state of the underdoped regime is
incommensurate [15,16]. From theoretical arguments,
incommensurate AF order has been shown to be favorable

long ago forweakly dopedHubbard and t-Jmodels [17–27].
Recent renormalization group calculations suggest that
incommensurate AF order can coexist with superconduc-
tivity in a broad doping range [28]. The energy gain from the
magnetic order is tiny beyond the underdoped regime, but
it becomes much more robust when superconductivity is
suppressed. This raises the question whether the transition
in the Hall number as seen in experiment could be caused
by incommensurate antiferromagnetic order.
In this Letter, we show that a quantum phase transition

from a paramagnetic metal to a spiral antiferromagnetic
metal may indeed give rise to a crossover from 1þ p to p
in the Hall number as seen in cuprates [4]. Moreover, we
find that the single-particle spectral function exhibits hole
pockets with a strong spectral weight anisotropy reminis-
cent of Fermi arcs. Additional charge-density wave order
can lead to a single electron pocket, with no additional
Fermi surfaces, as observed [29]. To discriminate an
incommensurate spiral from commensurate antiferromag-
netic order we propose a quantum oscillation experiment.
We also note that certain topological Fermi liquids [30]
have charge transport properties nearly identical to those of
metals with magnetic order. And so our transport results
apply also to such states.
Spiral states.—In the following we describe spiral anti-

ferromagnetic states using the mean-field Hamiltonian [27]

HMF ¼
X
k

�
c†k↑; c

†
kþQ↓

�� ξk −A
−A ξkþQ

��
ck↑

ckþQ↓

�
; ð1Þ

where ξk ¼ −2tðcos kx þ cos kyÞ − 4t0 cos kx cos ky − μ is
the fermionic dispersion, A the antiferromagnetic gap, and
Q ¼ ðπ − 2πη; πÞ the ordering wave vector. We choose
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the hopping amplitude t ¼ 1 as our unit of energy in
all numerical results. Diagonalization of HMF yields
HMF ¼

P
k;i¼1;2Ek;ia

†
kiaki, where

Ek;1=2 ¼
ξk þ ξkþQ

2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðξk − ξkþQÞ2 þ A2

r
: ð2Þ

The quasiparticle operators aki are related to the bare
fermion operators by ck↑ ¼ P

jUk;1jakj and ckþQ↓ ¼P
jUk;2jakj, where

Uk ¼

0
B@

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þðξk−E1;kÞ2

p Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þðξk−E2;kÞ2
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− Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þðξk−E1;kÞ2

p

1
CA ð3Þ

is the orthogonal transformation that diagonalizesHMF. In a
spiral antiferromagnetic state, the magnetic moments rotate
in the xy plane and their directions are modulated by the
wave vector Q as mðRiÞ ∼ cosðQ · RiÞex þ sinðQ · RiÞey,
where Ri is a lattice vector.
We make the ansatz AðpÞ ¼ αðp� − pÞΘðp� − pÞ for

the doping dependence of the gap, motivated by results for
the on-site magnetization in spiral states in the t-t0-J model
[25]. A similar linear doping dependence of the gap in
underdoped cuprates is also found in resonating valence
bond mean-field theories for the t − J-model [9] or the
pseudogap energy scale seen in experiments [31]. For every
doping p, the incommensurability η is determined by
minimizing the free energy at fixed A. More details on
the doping dependence of η can be found in the
Supplemental Material [32].
Fermi surface and spectral function.—Filling the quasi-

particle bands Ek;1=2 of the spiral state up to the Fermi level
yields hole and sometimes electron pockets as shown in the
left panel of Fig. 1. For small doping one obtains only two
hole pockets [25], while for larger doping two electron
pockets appear in addition. Spiral states with four hole
pockets are also possible in principle [33], but were not
obtained in the present study if the incommensurability η is
chosen such that the free energy is minimized.
The spectral function for single-particle excitations is

given by Aðk;ωÞ ¼ P
σAσðk;ωÞ, where

A↑ðk;ωÞ ¼
X
i¼1;2

U2
k;1iδðω − Ek;iÞ; ð4Þ

A↓ðk;ωÞ ¼
X
i¼1;2

U2
k−Q;2iδðω − Ek−Q;iÞ: ð5Þ

Numerical results for the spectral function at ω ¼ 0 are
shown in the right panel of Fig. 1 for two different hole
dopings. The momentum shift by Q in the quasiparticle
bands contributing to A↓ðk;ωÞ generates a shifted copy of
all pockets. The total (spin summed) spectral function is
thus inversion symmetric, but still exhibits a slight nematic
deformation.

Amost intriguing feature is that for small dopingwe obtain
Fermi pockets with a strongly suppressed spectral weight
at their backside, reminiscent of the mysterious Fermi arcs
observed in underdoped cuprates. Let us see how this comes
about for the hole pockets related to particles with spin up.
Their contribution to the spectral weight atω ¼ 0 is given by
U2

k;11δðEk;1Þ, whereU2
k;11¼A2=ðA2þξ2kÞ forEk;1 ¼ 0. From

Fig. 1 it is clear that a large fraction of the inner side of the
pockets is very close to the bare Fermi surface, where ξk ¼ 0.
Hence, U2

k;11 and thus the spectral weight there is almost 1.
The back side of the pocket is remote from the bare Fermi
surface so that A < ξk and the spectral weight is thus quite
small.A similar spectral function, albeitwith fourfold rotation
symmetry, is obtained in the commensurate case for η ¼ 0.
Hall coefficient.—The Hall coefficient is defined as

RH ¼ σH=ðσxxσyyÞ, where σH is the Hall conductivity
and σαα is the longitudinal conductivity in direction α.
We compute the conductivities in a relaxation time
approximation with a momentum independent scattering
time τ. Neglecting “interband” scattering between the
two quasiparticle bands Ek;1 and Ek;2, the conductivities
in the spiral state are given by the same expressions as
for noninteracting two-band systems [34]. Although the
magnetic fields applied in the recent experiments by
Badoux et al. [4] are impressively high, the product ωcτ is
still small since the relaxation time τ is rather short
(ωc ¼ cyclotron frequency). In the so-called weak-field
limit ωcτ ≪ 1, one obtains [34]

FIG. 1. Quasiparticle Fermi surfaces (left) and single-electron
spectral functions (right) of spiral antiferromagnetic states for
p ¼ 0.08, A ¼ 0.63 (top), and p ¼ 0.15, A ¼ 0.23 (bottom),
where t0 ¼ −0.35 and η ≈ p. Hole and electron pockets in the left
panels are marked in red and green, respectively, while the thin
lines indicate the bare (black) and the Q shifted (blue) unrecon-
structed Fermi surfaces.
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σαα ¼ e2τ
X
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∂k2α nFðEk;iÞ; ð6Þ

σH ¼ −e3τ2
X
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ð2πÞ2

�∂2Ek;i

∂k2x
∂2Ek;i

∂k2y −
� ∂2Ek;i

∂kx∂ky
�

2
�

× nFðEk;iÞ: ð7Þ
Note that the τ dependence cancels in the Hall coefficient
RH. The Hall number is defined as nH ¼ ðRHeÞ−1. In
special cases such as parabolic dispersions, or for generic
band structures with closed Fermi surfaces in the high-field
limit ωcτ ≫ 1, the Hall number is simply given by the
charge carrier density [35].
Results for the doping dependence of nH are shown for

different values of the antiferromagnetic gap in Fig. 2. At
small doping, nH is roughly given by the hole density p.
Near p� ¼ 0.19, nH crosses over to 1þ p. In the weak-field
limit, the width of this crossover depends on the size of the
antiferromagnetic gap. Larger gaps, or a square root doping
dependence of the gap, lead to a sharper crossover. In the
crossover region, the Fermi surface consists of hole and
electron pockets, which is similar to the commensurate case
and the YRZ scenarios studied in Ref. [14].
In the high field limit ωcτ ≫ 1 and at zero temperature,

nH is expected to be equal to the sum of the charge carrier
densities of all Fermi pockets weighted by their sign, which
is equal to the doping level p. Onewould thus expect a jump
innH fromp to 1þ p in the high-field limit. Thewidth of the
crossover at weak and intermediate fields depends on the
Fermi surface geometry, temperature, and the field strength.
Quantum oscillations.—The measurements of the Hall

coefficient by Badoux et al. [4] are consistent with both a
commensurate Néel state and an incommensurate spiral
state. The Hall signal involves a sum over all Fermi surface
sheets. For sufficiently high fields, the Hall number is given
by the sum over all areas enclosed by the Fermi surface
sheets, with electronlike Fermi surfaces counting negatively.

Luttinger’s theorem then implies that the Hall number is
equal to doping p, irrespective of the incommensurability.
As an example, in Fig. 3 we show Fermi surfaces for a

Néel state and an incommensurate spiral state at p ¼ 0.1
for parameters where only hole pockets appear. In the Néel
state, the hole density is given by

p ¼
X
σ¼↑;↓

Z
MBZ

d2k
ð2πÞ2ΘðEk;1Þ ¼

Z
BZ

d2k
ð2πÞ2ΘðEk;1Þ; ð8Þ

where integrals marked with MBZ and BZ are over the
magnetic and full Brillouin zone, respectively. In the spiral
state, one has

p ¼
Z
BZ

d2k
ð2πÞ2 ΘðEk;1Þ: ð9Þ

The integrals measure the area of the hole pockets. The total
area is the same in both cases and is determined by p.
However, the single pockets in the spiral state are twice

as large as the pockets in the Néel state. Spiral states could
therefore be distinguished by quantum oscillations in the
magnetic field dependence, as pointed out previously by
Sebastian et al. [33]. For ωcτ > 1, the magnetic suscep-
tibility and other response quantities exhibit periodic
oscillations as a function of B−1 due to Landau quantization
[35]. Each closed Fermi surface sheet yields a signal with
an oscillation frequency

F ¼ ðΔB−1Þ−1 ¼ ℏS
2πe

; ð10Þ

where S is the enclosed momentum space area. The
pocket areas in the commensurate Néel state with four
hole pockets and the incommensurate spiral state with two
hole pockets are

ScAF ¼
�
2π

a

�
2 p
4
; SiAF ¼

�
2π

a

�
2 p
2
; ð11Þ

respectively, where a is the lattice constant. The quantum
oscillation frequencies of incommensurate spiral states are

FIG. 2. Hall number nH as a function of doping for t0 ¼ −0.35.
Results for a linear dependence, AðpÞ ∼ ðp� − pÞ, and a square
root dependence, AðpÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� − p
p

, where p� ¼ 0.19 in both
cases, are labeled as “Lin” and “Sqrt,” respectively. The thin lines
mark nH ¼ p and 1þ p.

(a) (b)

FIG. 3. Comparison between hole Fermi pockets of (a) incom-
mensurate and (b) commensurate antiferromagnetic states with
hole density p ¼ 0.1 for t0 ¼ −0.35 and A ¼ 0.7. η ¼ 0.1 in (a).
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thus expected to be twice as large as those of Néel states at
the same hole density. In particular, with the in-plane lattice
constant of YBCO, a ¼ 3.8 Å, one obtains the oscillation
frequencies FcAF ¼ 7160T · p and FiAF ¼ 14320T · p.
Fermi surface for coexisting spiral antiferromagnetic

and charge-density wave orders.—Cuprates show strong
charge-density wave (CDW) correlations for p ≈ 0.12,
which become long-ranged in high magnetic fields
[36–42]. In the field-induced ordered state, measurements
of quantum oscillations and the Hall or Seebeck coefficient
indicate a reconstruction of the Fermi surface into an
electron Fermi pocket [43–46], and no additional hole
pockets are found in single-layer materials [47]. Theoretical
attempts to explain this reconstruction starting from a large
hole Fermi surface [48] or the YRZ ansatz with small hole
pockets [49] yielded additional open Fermi surface sheets
or hole pockets. A reconstruction into one electron pocket
could work starting from four Fermi arcs [50], but that
proposal did not answer the question about their origin.
Coexisting spiral AF and bidirectional CDW order can

be described by adding

HCDW ¼ −C
X
k;σ;i

f

�
kþ qi

2

�
ðc†kþqiσ

ckσ þ c†kσckþqiσÞ ð12Þ

to Eq. (1), where C is the CDW order parameter.
Bidirectional CDW order with ordering wave vectors
q1 ¼ ðπ=2; 0Þ and q2 ¼ ð0; π=2Þ is chosen as a simple
approximation for the (incommensurate) CDW with a
period of roughly four lattice constants that is seen in
experiments. The form factor fðkÞ is of predominantly
d-wave symmetry [fðkÞ ¼ cos kx − cos ky] in cuprates.
We determine the Fermi surface for this symmetry and
an onsite CDWwith s-wave symmetry [fðkÞ ¼ 1]. In Fig. 4
we show that CDW order of both symmetries can recon-
struct the two hole Fermi pockets of the spiral state [similar

to those in Fig. 3(a)] into a single electron pocket. For
d-wave CDW order with a smaller order parameter, the
resulting Fermi surface is qualitatively similar to Fig. 4(a)
[32]. Intriguingly, larger d-wave CDWorder parameters, as
in Fig. 4(b), can give rise to additional Dirac cones in the
spectrum. These arise from the inversion of two bands with
different spin chirality, similar to topological insulators with
spin-orbit coupling.
Conclusions.—We have shown that spiral antiferromag-

netism may explain several features of the phenomenology
of hole-doped cuprates. The spectral function of spiral
antiferromagnetic states consists of hole pockets, which
due to a strong momentum dependence of the spectral
weight look like Fermi arcs. The Fermi surface
reconstruction at a quantum critical point due to spiral
antiferromagnetic order may explain the rapid change in the
Hall number as recently observed near optimal doping in
cuprate superconductors. In a doping regime where it is
observed in cuprates, additional charge-density wave order
further reconstructs the hole Fermi surface of the spiral
antiferromagnetic state into a single electron pocket.
Metals with topological order can have the same charge

transport properties as metals with magnetic order [30], but
their fermionic quasiparticles carry a pseudospin with no
Zeeman coupling, and so can be distinguished in quantum
oscillation or low T photoemission.
The detection of spiral antiferromagnetic order, or

quantum-fluctuating order in the topological metals, in
hole-doped cuprates near optimal doping would signifi-
cantly improve our understanding of the cuprate phase
diagram. Incommensurate antiferromagnetism is expected
from a theoretical point of view and is favorable over Néel-
type antiferromagnetism. We propose quantum oscillation
measurements to distinguish between Néel-type and spiral
antiferromagnetic order.
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