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The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a
problem of holes within a standard percolation backbone, and numerical measurements of such holes give
the same size-distribution exponent τ ¼ 1.82ð1Þ as found for the NEP model. An argument is given that
τ ¼ 1þ dB=2 ≈ 1.822 for backbone holes, where dB is the backbone dimension. On the other hand, a
model of simple holes within a percolation cluster yields τ ¼ 1þ df=2 ¼ 187=96 ≈ 1.948, where df is the
fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of
Sheinman et al., which give τ ¼ 1.91ð6Þ. This suggests that the gel clusters are of the universality class of
percolation cluster holes. Both models give a discontinuous maximum hole size at pc, signifying explosive
percolation behavior.
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Recently, Sheinman et al. [1] introduced the no-enclave
percolation (NEP) model to explain the motor-driven
collapse of a model cytoskeletal system studied by
Alvarado et al. [2]. In the cytoskeletal system, myosin
motors act on actin fibers, which contract the system and at
the same time reduce the connectivity, driving the system to
a critical percolationlike transition. NEP models this by
considering random percolation in which clusters collapse,
producing solid clusters that represent the gelled regions of
the cytoskeletal system. This model has received a great
deal of attention [3–13].
In Ref. [1], the authors consider a region surrounded by

sites of other clusters and the NEP clusters are composed of
all sites within the region. Reversing occupied and vacant
sites or bonds, the problem can be thought of as finding the
distribution of hole sizes within a single large cluster. The
NEP model was found to have a size-distribution exponent
τ ¼ 1.82ð1Þ, which is less than the conventional lower
bound value 2, and represents a distinct universality class
from standard random percolation where τ ¼ 187=91.
However, the holes studied in Ref. [1] are not simple
percolation holes, but, as we shall argue, holes within the
surrounding backbone. In this Letter we derive universal
expressions for the scaling behavior for both holes in the
backbone and for simple holes in the percolation cluster.
We find that the latter gives a scaling consistent with the
experimental results of Ref. [1], suggesting this is the
appropriate model (i.e., simple holes) to describe the gel
system.
After this work was complete, a comment [12] and reply

[13] were published discussing the admissibility of having
τ less than 2. Here, we show that such exponents are
entirely possible for systems with a cutoff in the maximum

cluster or hole size, in agreement with Ref. [13] and also
with several previous discussions of related systems
[14–18].
In Ref. [1] (Supplementary Material), Sheinman et al.

consider clusters created by bond percolation on the
triangular lattice (BTR) at the critical threshold pc ¼
2 sin π=18 [19]. They identify the external boundary by
the sites of bordering clusters, and then combine every site
within the boundary into the NEP cluster. Because they use
the external sites to define the boundary, they effectively
close the openings of separation one lattice spacing in their
clusters, as shown in Fig. 1. This means that the boundary
of the cluster becomes the external accessible hull [20],
which has a fractal dimension of 4=3, rather than the entire
hull, which has a fractal dimension of 7=4. All remaining
dual-lattice bonds [dashed lines in Fig. 1(b)] are bicon-
nected, and accordingly they form the backbone of the
dual-lattice cluster [21]. Thus, NEP clusters are equivalent

(a) (b)

FIG. 1. Diagram illustrating the NEP procedure of Ref. [1].
(a) b-TR clusters (solid lines) and the dual honeycomb lattice
(dashed lines). (b) All components within a boundary of
neighboring cluster sites become a NEP cluster, and the remain-
ing dashed bonds give the dual-lattice backbone.
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to holes within the backbone of the largest dual-lattice
cluster.
Sheinman et al. find that their model yields a size-

distribution exponent of τ ¼ 1.82ð1Þ, while their experi-
ments yield τ ¼ 1.91ð6Þ. Thus, their model supports the
experimental result that τ < 2, although their value of τ is
somewhat low compared to measurements.
In this Letter we consider simple cluster holes as well as

backbone holes. We carry out extensive simulations of both
for site percolation on the square (SSQ) and triangular
lattices (STR), and bond percolation on the square lattice
(BSQ). We consider a square L × L system for the square
lattice, and a rhombic L × L system for the triangular
lattice, with L ¼ 8; 16;…; 16384, and periodic boundary
conditions. For the cluster holes, we occupy the system
with sites or bonds with probability p, identify the largest
black cluster, remove all remaining sites or bonds, then
identify the white clusters by standard cluster search
algorithms. For the backbone holes (bond percolation
only), we identify the backbone before finding the holes
within it. For bond percolation, the holes (white clusters)
are constructed on the dual lattice, while for site percola-
tion, they are found on the matching lattice [19]. We carried
out from 4 × 105 (L ¼ 16384) to 5 × 106 (L ¼ 8) runs.
We have not found previous work directly studying holes

in percolation clusters. Related problems that have been
studied include lacunarity [22,23] and holes in directed
percolation [17,18].
The results for the size distribution are shown in Fig. 2.

For the backbone holes, we find τb ¼ 1.82ð1Þ, which

agrees with the NEP simulations of Sheinman et al.
For cluster holes, we find a value of τh ¼ 1.949ð3Þ, which
is consistent with the experimental results of Sheinman
et al. Thus, we argue that their experimental system is more
accurately modeled by cluster holes than by backbone
holes.
To derive a scaling relation for the holes within the

percolation cluster, consider the hole-size distribution
nhðL; pÞ, which equals the number of holes per lattice
site containing h vacant sites, in the largest cluster of an
L × L system at bond occupation p. At pc, the total number
of cluster holes N is proportional to the number of sites s in
the cluster, which scales as ∼Ldf where df ¼ 91=48 is the
cluster fractal dimension [24]. This is demonstrated in
Fig. 3(a) for STR, and we have also verified that propor-
tionality for BSQ.
Then, it follows that nhðL; pÞ scales as

nhðL; pcÞ ∼ Ldf−dh−τhfðh=LdÞ; ð1Þ
where the scaling function fðzÞ cuts off when h is of the
order of the size of the largest hole, which is proportional to
Ld, where d ¼ 2 is the dimensionality. The term at the
beginning Ldf−d differs from the usual scaling of cluster
size and causes the density of holes of a given size h to go
to zero as the system size increases. The form of Eq. (1) is
identical to that proposed in Ref. [13], noting that here nh
represents the number of hole sites per lattice site, while in
Ref. [13] ns represents the total number of hole sites, so
they differ by a factor of Ld ¼ M. Here, we go on to find an
exact expression for τh, which was not found in Ref. [13].
Next, we need to make some considerations for the case

that τh < 2, similar to the discussions of Huber et al.
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FIG. 2. Scaled number of cluster holes n0h ¼ nhðL; pcÞLd−D (a)
or backbone holes (b) of size h as a function of h, where D ¼ df
for cluster holes and D ¼ dB for backbone holes, showing,
respectively, τh ¼ 1.949ð3Þ consistent with the prediction
187=96 of Eq. (3) and τb ¼ 1.82ð1Þ consistent with the prediction
1.822 of Eq. (6), for systems of different size L (see legend).
The inset shows hτn0h vs h=L2, where τ is τh (a) or τb (b),
demonstrating the accumulation in the distribution due to the
largest holes. For (a) we used STR and for (b) BSQ. The dashed
gray lines have a slope of −2 for comparison.
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FIG. 3. Log-log plot of the total numberN of cluster holes (a) or
backbone holes (b) in the largest cluster, and also the size S1
of the largest cluster (a) or backbone (b), as a function of the size
of the system L, with slopes equal to df ¼ 91=48 (a) and
dB ¼ 1.6433 (b), showing that the number of cluster or backbone
holes is proportional to the mass of the cluster (a) or backbone
(b). For (a) we use STR and for (b) we use BSQ. The inset shows
N=S1, which rapidly goes to a constant ≈0.0410907 for cluster
holes and ≈0.209908 for backbone holes for large L.
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[17,18]. Normally, τ has to be greater than 2 so that the size
distribution is normalizable:

P∞
s¼1 sns ∼

P∞s1−τ < ∞.
However, for systems such as these where there is an
upper cutoff to the sum and an asymptotically vanishing
number of holes per lattice site, τ can be less than 2. Say
nhðL; pcÞ ∼ Ah−τh with a cutoff hmax, then

Xhmax

h¼1

hnhðL; pcÞ ∼
Xhmax

h¼1

Ah1−τh þ hmax

Ld ∼
Ah2−τhmax

2 − τh
þ hmax

Ld :

ð2Þ

This can remain finite as hmax → ∞ if A → 0 with
A ∼ hτh−2max ∼ Ldðτh−2Þ, for τh < 2. We split off hmax=Ld, to
allow for a finite fraction of the system to be occupied by
the largest hole. Comparing the scaling of A with that of the
leading term of Eq. (1), we have dðτh − 2Þ ¼ df − d, or

τh ¼ 1þ df
d

¼ 187

96
≈ 1.948: ð3Þ

This value agrees with our simulation results τh ¼ 1.949ð3Þ
for holes, and is close to the experimental value τ ¼
1.91ð6Þ found in Ref. [1].
Note that, while Eq. (1) can apparently be written in the

traditional form nh ∼ h−τ
0
gðh=LdÞ with τ0 ¼ 2 and gðxÞ ¼

xτ
0−τhfðxÞ ¼ x5=96fðxÞ [12], the scaling function gðxÞ goes

to zero algebraically as x → 0 rather than to a constant as in
typical scaling. The τh of Eq. (3) is the proper τ exponent to
describe the size distribution of holes.
The scaling relation (3) above is in the form of

Mandelbrot’s hyperscaling relation [25]

τ ¼ 1þ dall=dobject; ð4Þ

where the objects combine together to make the “all.” In
normal two-dimensional percolation where the ensemble of
fractal clusters fills the nonfractal space, we have dall ¼ 2
and dobject ¼ 91=48, yielding τ ¼ 187=91 ≈ 2.055. For
cluster holes, dall corresponds to the fractal dimension
df of the largest cluster, which is also the union of the hulls
of all the holes, and dobject ¼ 2. Equation (3) also follows
from the “triplex” formula of Refs. [17,18]

τ ¼ 1þ ðDnum −Dtot þDÞ=D; ð5Þ

whereDnum ¼ df is the fractal dimension of the point set of
the clusters, D ¼ 2 is the dimension of the objects, and
Dtot ¼ 2 is the fractal dimension of the union of objects.
The vanishing behavior of percolation cluster holes with

A → 0 is an example of the “volatile” fractality discussed
by Herrmann and Stanley for backbone blobs, and our
scaling (1) is similar in form to Eq. (2) of Ref. [14]. The
holes are indeed volatile in that they disappear as they are
subsumed into larger holes as L is increased.

In the case of the backbone holes, where the backbone
has dimension dB ¼ 1.64336ð10Þ [14,26,27], a similar
argument gives

τb ¼ 1þ dB
2

¼ 1.82168ð5Þ; ð6Þ

which agrees with our measurements τb ¼ 1.82ð1Þ, and
also with the numerical results of Sheinman et al., support-
ing the idea that their NEP clusters are effectively dual-
lattice backbone holes. The formula ðτb − 1Þðτ − 1Þ ¼ 1 is
another instance of the duality noted in Ref. [18], which
links τb to the τ for backbone blobs [28].
We measured the size of the largest hole in a periodic

system of size L × L, where the largest hole can be
wrapping, nonwrapping, or a cross-configuration wrapping
in both directions. For STRwe found the average size of the
largest hole to be exactly half the size of the system, while
for the other systems we studied it approaches 1=2 as
L → ∞, as shown in Fig. 4. To explain this, observe that the
largest white cluster (hole) and the black cluster with every
hole but the largest one filled in are identical on the
triangular lattice where pc ¼ 1=2, switching black and
white, so on the average each is 1=2 the lattice. For other
lattices where there is not perfect self-duality or self-
matching, this result holds asymptotically for large L.
Let us consider the “solid” size S1s of the largest black

cluster with every hole but the largest filled in. When
p < pc, S1s will be Oð1Þ, while at pc it will be OðL2Þ. For
instance, for STR, for L → ∞ one has S1s=L2 ¼ 0 for
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FIG. 4. (a) The largest cluster hole size hmax divided by the
number of sites L2, as a function of L−1=4 for various systems,
showing that this quantity is exactly 1=2 for STR, and approaches
1=2 as L → ∞ for SSQ and BSQ. For BSQ we measure the size
of the hole as the number of sites it contains; if we measure the
holes by dual-lattice bonds, then hmax=L2 ¼ 1=2 for all L by
duality. (b) The fraction of the system filled by the largest
backbone hole as a function of L−2=3 for BSQ. Here, the fraction
approaches 0.7772(4) as L → ∞. The scaling in both cases is
LdH−d, where the hull dimension dH ¼ 7=4 (holes) and 4=3
(backbones), because for asymmetric systems the hull contributes
to the size of the largest hole hmax proportionally to its length.
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p < pc, 1=2 for p ¼ pc, and 1 for p > pc, as shown by
Fig. 5(a). This implies a discontinuity in the ratio S1s=L2

[1], which is a signature of an “explosive” phenomenon in
percolation, which was first hypothesized in Ref. [29] and
shown to in fact occur in later models such as those of
Refs. [30–32]. Likewise, the size of the largest hole,
hmax=L2, which is equivalent to the black solid cluster
switching colors, steps from 1 to 0 at pc. While the hole
problem is based upon standard percolation, they are not
equivalent since creating the holes requires a global
modification to the system (identifying the holes and
removing all internal sites, and in the NEP case, also
identifying the backbone). It is an explosive feature con-
tained in standard percolation.
We can also envision creating the solid clusters by an

epidemic or Leath kind of growth process, starting with a
seed and adding neighbors with a probability p, otherwise
blocking neighbors with probability 1 − p. We could then
fill in all the internal blocked sites and holes of the cluster,
making it solid. In Fig. 5(b) we show a walk around such a
cluster to find the enclosed area or size of the cluster. This
enclosed area however is not necessarily a hole within the
largest dual-lattice cluster, so the Leath method is not a way
to find the hole-size distribution studied here. Also, the
hole-area distribution is not the same as the enclosed-area
distribution studied in Ref. [33].
Finally, we consider another place that holes appear:

when sections of a boundary are broken off. Consider the
largest white hole (site percolation) and add a layer of
blocked sites at the internal boundary, as shown in Fig. 6.
This breaks up the white cluster into many additional holes.
We find that the total number of holes is proportional to the
hull length LdH , and the corresponding τh0 is predicted by
Eq. (4) with dall ¼ dH ¼ 7=4:

τh0 ¼ 1þ dH
2

¼ 15

8
¼ 1.875 ð7Þ

as shown in Fig. 6. Again, τ < 2.
The appearance of large holes is very much a phenome-

non of a planar lattice, and these considerations do not
apply in higher dimensions. On the other hand, they should
apply to any critical two-dimensional system, such as the
random cluster or q-state Potts model [34,35], where τ ¼
1þ df=2 ¼ 2 − ð6 − gÞðg − 2Þ=ð16gÞ < 2 for 0 < q ≤ 4,
where g ¼ 4 − 2=π cos−1ðq=2 − 1Þ, 2 ≤ g ≤ 4 [36,37].
Note that one can also study the backbone holes of this
model. This is an interesting problem for future research.
Thus, we have shown that the universality class of the

NEP model is that of holes in backbone percolation, which
has an exponent of τb ¼ 1þ dB=2 ≈ 1.822 of Eq. (6). If we
interpret the clusters instead to be simple cluster holes,
then we would have another universality class with τh ¼
1þ df=2 ¼ 187=96 of Eq. (3). The general expression
for τ, Eq. (4), is further supported by the case of holes cut
from the hull, which gives τh0 ¼ 1þ dH=2 ¼ 15=8 of
Eq. (7). Likewise, one can conceive of removing the outer
layer of the largest backbone hole, which would yield
another case with τb0 ¼ 1þ dHb

=2 ¼ 5=3. We are not
aware if any of these universality classes, all with τ < 2
and all associated with explosive percolation behavior, have
been discussed before.
The scaling behavior of percolation holes appears to

model the properties of the experimental gel clusters seen in
Ref. [1]. This suggests that in the experiment the steric
effect causes clusters fully surrounded by others to be
absorbed, and a nearest-neighbor separation can disable
this effect.

(a) (b)

FIG. 5. (a) The solid size S1s=L2 of the largest cluster on the
triangular lattice versus p for different L (see legend). The inset
shows the scaling plot S1s=L2 versus ðp − pcÞL1=ν with ν ¼ 4=3.
When L → ∞ this gives a step function indicative of explosive
behavior. (b) An example of a hull walk around a percolation
cluster of 268 occupied bonds and 239 sites. The 760-step walk
(diagonal line segments) connects points on the medial lattice and
turns right when encountering an occupied bond and left when
encountering a vacant bond, yielding the enclosed area or S1s of
144 square lattice spacings. This is also the size of the hole in the
larger dual-lattice cluster.
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