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Vertically bounded fingering double diffusive convection is numerically investigated, focusing on the
influences of different velocity boundary conditions, i.e., the no-slip condition, which is inevitable in the
lab-scale experimental researches, and the free-slip condition, which is an approximation for the interfaces
in many natural environments, such as the oceans. For both boundary conditions the flow is dominated by
fingers and the global responses follow the same scaling laws, with enhanced prefactors for the free-slip
cases. Therefore, the laboratory experiments with the no-slip boundaries serve as a good model for the
finger layers in the ocean. Moreover, in the free-slip case, although the tangential shear stress is eliminated
at the boundaries, the local dissipation rate in the near-wall region may exceed the value found in the no-slip
cases, which is caused by the stronger vertical motions of horizontally focused fingers and sheet structures
near the free-slip boundaries. This counterintuitive result might be relevant for properly estimating and
modeling the mixing and entrainment phenomena at free surfaces and interfaces widespread in oceans and
geophysical flows.
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Double diffusive convection (DDC)—the convection
flow where the fluid density is determined by two scalars
with different molecular diffusivities—is ubiquitous in
many natural environments. The terrestrial system of the
greatest relevance is the ocean [1–4], where the density of
seawater mainly depends on temperature and salinity.
Originally proposed as an oceanographical curiosity [5],
DDC has drawn lots of attention since it plays an important
role in ocean mixing; e.g., see a comprehensive review in
the recent book of Radko [6] and the references therein. A
particularly fascinating phenomenon of DDC flows is the
salt fingers, which occur when a fluid layer experiences an
unstable salinity gradient and a stable temperature gradient.
Salt fingers can even grow when the overall stratification is
stable [7]. Conditions favoring salt fingers are present in
most subtropic oceans [8]. Fingering DDC can induce
intense vertical mixing [9], and may even attenuate the
ocean signatures of climate changes [10].
Most early experiments on fingering convection

employed a sharp interface from which the salt fingers
grow and extend freely in the vertical direction [3]. When
starting from a thick region with both temperature and
salinity gradients, one finger layer or a stack of alternating
convection and finger layers may develop, depending on
the control parameters [11–13]. Three-dimensional direct
numerical simulations (DNS) have provided detailed infor-
mation on DDC, such as simulations in a fully periodic box
with uniform background gradients [14–17] and those
bounded by two parallel plates [18,19]. In the recent

experiments using electrodeposition cells by Tilgner and
co-workers [20,21], one single finger layer was observed
between top and bottom boundaries for both stable and
unstable stratification. Those experiments provide a good
platform to investigate the vertical scalar transport and flow
structures of finger layers. Our previous DNS successfully
reproduced most key observations of the experiments, and
good agreement was obtained between our numerical
results and the experimental results [22–24].
However, an inevitable difference between the experi-

ments and the ocean finger layers is that the experiments
have been done with no-slip boundaries, which do not exist
in the ocean. Therefore, the relevance of these experiments
for ocean DDC flow has been questioned. To clarify the
relevance of this difference, in the present Letter, by using
DNS, we carry out a comparison between finger layers
bounded by two no-slip plates, which are the same as the
experiments (see, e.g., [20,21]), and those bounded by two
free-slip plates, which model the ocean finger layers
bounded by two homogeneous convection layers as in
the thermohaline staircase. Similar studies were conducted
for (rotating) Rayleigh-Bénard (RB) flow [25,26]. The
current study is required if one wants to apply the
experimental results of DDC flow to ocean flow [21].
Moreover, the comparison between different boundary
conditions reveals some surprising characteristics of finger-
ing DDC flow.
Consider DDC flow between two parallel plates that are

perpendicular to the direction of gravity and separated by a
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height L. At the two plates both temperature and salinity
are kept constant. The two Prandtl numbers, i.e., the ratio
between the kinematic viscosity ν and the scalar molecular
diffusivity κ, are fixed at PrT ¼ 7 and PrS ¼ 700, which are
the typical values of subtropic seawater. We confine
ourselves in the finger regime, namely, the top plate has
both higher salinity and temperature. The flow is driven
by the salinity difference ΔS between two plates and
stabilized by the temperature difference ΔT . The strength
of the buoyancy force associated with the scalar field
ζ ¼ T or S is measured by the Rayleigh number Raζ ¼
ðgβζL3ΔζÞ=ðκζνÞ, with g being the gravitational acceler-
ation and βζ the positive expansion coefficient, respec-
tively. The density ratio, which reflects the relative strength
of the buoyancy force induced by the temperature differ-
ence to that by the salinity difference, can then be
calculated asΛ ¼ ðβTΔTÞ=ðβSΔSÞ ¼ ðPrS RaTÞ=ðPrT RaSÞ.
The flow quantities are nondimensionalized by L, ΔT ,

ΔS, and the free fall velocity U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gβSΔSL
p

. We numeri-
cally solve the incompressible Navier-Stokes equation
within the Oberbeck-Boussinesq approximation for the
velocity ui, with i ¼ 1, 2, 3, pressure p, and nondimen-
sionalized temperature θ and salinity s, respectively. The
subscript “3” denotes the component in the vertical
direction opposite to the gravity. The details of the
numerical work can be found in Refs. [27,28]. At the
two plates either no-slip or free-slip boundary conditions

are imposed for the tangential velocity components and the
nonpenetration condition for the normal velocity compo-
nent, respectively. In the horizontal directions we apply
periodic boundary conditions. The aspect ratio is chosen
such that the horizontal size of the domain is much larger
than the horizontal length scale of the salt fingers.
The explored phase space of our numerical simulations is

shown in Fig. 1. The salinity Rayleigh number RaS ranges
from 106 to 1012 with 1 ≤ Λ ≤ 10, i.e., in the salt finger
regime. For every pair of ðRaS;ΛÞ two simulations were
conducted with either no-slip or free-slip boundary con-
dition. Initially, the fluid is at rest, the temperature field has a
vertically linear distribution, and the salinity field is uniform
and equal to the mean of the values at the two plates,
respectively. These initial fields are the same as those in the
experiments [20,21]. Figures 2(a) and 2(b) display the three-
dimensional volume rendering of salt fingers for ðRaS;ΛÞ ¼
ð5 × 107; 2.0Þwith different boundary conditions. The color
map and opacity settings are exactly the same in the two
plots. The flow morphology is essentially the same for the
two boundary conditions: Thevertically oriented salt fingers
occupy thewhole bulk region,while near the plates sheetlike
structures connect the roots of the adjacent fingers. Usually
fingers are associated with slender convection cells.
Compared to the no-slip cases, the salt fingers in the free-
slip case are much stronger; i.e., the fluid moves with larger
vertical velocity and high salinity anomaly occupies more
space in the bulk region. This is expected since the no-slip
boundaries not only exert the vertically geometric confine-
ment as the free-slip boundaries do, but they also require the
horizontal velocity to be zero at the two plates. Thus, in the
no-slip case the recirculation near the boundary within each
convection cell is weakened, and the salt fingers are not as
strong as in the free-slip case.
The three most important responses of the system are

the dimensionless transfer rates for the two scalars
NuS ¼ ðhu3si − κSh∂3siÞ=ðκSΔSL−1Þ and NuT ¼ ðhu3θi−
κTh∂3θiÞ=ðκTΔTL−1Þ, and the dimensionless flow velocity
Re ¼ UrmsL=ν. Here, h·i denotes the average over the
entire domain and time, and Urms is the rms value of the
velocity magnitude. The dependences of the three
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FIG. 1. The explored parameters shown in the RaS–Λ plane and
colored by RaT. The black circle marks the case shown in Fig. 2.

(a) (b)

FIG. 2. The volume rendering of salt fingers for ðRaS;ΛÞ ¼ ð5 × 107; 2.0Þ (marked by a black circle in Fig. 1) with (a) the no-slip
boundary condition and aspect ratio 2.0 and (b) the free-slip boundary condition and aspect ratio 2.4, respectively. The two plots share
the same color map and opacity settings.
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quantities as functions of RaS are plotted in Figs. 3(a)–3(c).
Since NuT is very close to the conductive value 1, we plot in
Fig. 3(b) only the convective flux NuT − 1. The effects of
different boundary conditions revealed by Fig. 3(a)–3(c)
are consistent with the flow fields shown in Fig. 2 in two
aspects. First, all three quantities are enhanced by replacing
the no-slip boundary condition with the free-slip one,
which is attributed to stronger salt fingers, as shown in
Fig. 2(b) as compared to Fig. 2(a). The salt fingers in the
free-slip cases move faster in the vertical direction and,
therefore, the scalar transfer is more efficient. Second, the
quantities follow very similar scaling laws for different
boundary conditions, which reflects the fact that the flow
morphology is essentially the same, i.e., dominated by salt
fingers. In Fig. 3(a) we also compare NuS with the
Grossmann-Lohse theory [29–33] for the no-slip cases.
The agreement is very good, which has also been found in
our previous studies [22–24]. Our previous studies with
no-slip boundary conditions revealed that for fixed RaS, as
Λ increases within the finger regime, NuS only changes
slightly and Re decreases significantly [22,24]. The present
results suggest that it is also true for the free-slip cases; see
Figs. 3(a) and 3(c).

Compared to the no-slip cases, the thickness λs of the
salinity boundary layer is smaller in the free-slip cases.
Here λs is defined as the distance between the first peak of
the srms profile and the adjacent boundary. Our results
indicate that for both boundary conditions, λs scales as
Nu−1S . In Fig. 3(d) we plot the reciprocal value ðλs=LÞ−1
compensated by Ra−1=3S , which follows a very similar trend
as NuS shown in Fig. 3(a).
The above observations indicate that salt fingers are

robust with respect to different velocity boundary con-
ditions, and, therefore, the exponents of the scaling laws for
NuS, NuT , and Re are also the same. According to the
global balance between the Nusselt numbers and the total
dissipation [22,28], the global dissipation rate must be
higher for the free-slip cases than that for the no-slip cases.
In Fig. 4(a) we plot the horizontally averaged mean profiles
of Da ¼ hSijSijih calculated from the flow fields shown in
Fig. 2. Here, Sij ¼ ð∂jui þ ∂iujÞ=2 is the strain-rate tensor
and it relates to the local dissipation rate by ε ¼ 2νSijSij.
Indeed, the dissipation rate of the free-slip case is higher in
the bulk region than that of the no-slip case. Meanwhile,
near the boundary the dissipation rate is also enhanced in
the free-slip case. This is surprising since by imposing the
free-slip boundary condition we eliminate the shear stress
at the boundary. The increase in the dissipation rate near the
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FIG. 3. System responses versus RaS. (a) NuS compensated
by Ra1=3S , (b) NuT − 1, (c) Re compensated by Ra1=2S , and

(d) ðλs=LÞ−1 compensated by Ra1=3S . The free-slip cases are
marked by open symbols and the no-slip cases by solid symbols,
respectively. Symbols are colored according to the density ratio
Λ. The dashed line in (a) represents the Grossmann-Lohse
prediction.
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FIG. 4. (a) The mean profiles of Da ¼ hSijSijih (black dashed
lines) and the contributions from the diagonal components of the
strain-rate tensor Dd ¼ hΣi¼jðSijSijÞih (red lines) and the off-
diagonal components Do ¼ hΣi≠jðSijSijÞih (blue lines) for the
free-slip case and no-slip cases. The control parameters are RaS ¼
5 × 107 and Λ ¼ 2.0. Because of the symmetry about z ¼ 0.5,
only the lower half of the domain is shown here. (b) The averaged
dissipation rate εb at boundary. The symbols and color map are
the same as in Fig. 3.
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boundaries when the no-slip boundary condition is replaced
by the free-slip one is consistently observed for all
Rayleigh numbers we simulated, as shown in Fig. 4(b).
Previous studies reported similar behaviors in the RB flow
with no-slip or free-slip boundary conditions [25].
To clarify the origin of the high dissipation rate, we

divide SijSij into the contribution from the diagonal
components of Sij, i.e., Dd ≡ hΣi¼jSijSijih, and that from
the off-diagonal components, Do ≡ hΣi≠jðSijSijÞih. The
mean profiles of the two parts are also plotted in Fig. 4(a).
In the bulk region, the dissipation for both boundary
conditions is dominated by the off-diagonal components
Do. Further examination of the data reveals that the largest
contribution is from the horizontal gradient of the vertical
velocity, which corresponds to the shear among salt fingers
as they move in the vertical direction. The free-slip case
allows stronger fingers with larger vertical velocity; thus,
the dissipation rate is also higher than that for the no-slip
case at the same control parameters.
Near the boundary the situation is totally different. For

the free-slip case the dissipation near the boundaries is
dominated by Dd, as shown in Fig. 4(a) for RaS ¼ 5 × 107

and Λ ¼ 2.0. This strong dissipation can be directly
connected to the flow structures near two plates. In
Fig. 5 we show, for the free-slip case with the same
parameters, the contours of vertical velocity u3, salinity
s, and the dominant terms of dissipation rate Dd on a
horizontal plane z=L ¼ 0.005 which is very close to the
bottom plate. At this height the local dissipation is
dominated by tangential shear stress in the no-slip case.
The sheet structures are very distinct in the contours of both
u3 and s. These sheet structures rise from the bottom plate
and carry a large salinity anomaly. The ascending fingers
usually grow from the intersections of the sheet structures.
When these structures move upward, they induce strong
converging flows in the horizontal directions and, therefore,
large dissipation occurs as shown in Fig. 5(c). Note that the
locations with high dissipation rates coincide with the sheet
structures observed in Figs. 5(a) and 5(b). Meanwhile, the

descending fingers from the top plates decelerate as they
reach the bottom plate and drive the expanding flow in the
horizontal directions within the convection cells separated
by the sheet structures, which correspond to the large
negative u3 inside the cells in Fig. 5(a) and high salinity at
the same locations in Fig. 5(b). Figure 5(c) indicates that at
these locations the dissipation rate is also large.
At the no-slip boundary the velocity must be zero. In the

thin layer adjacent to the plate, as shown in Fig. 4(a), the
dissipation mainly originates from Do and the contribution
from the diagonal components decreases to zero on the
boundary. This is similar to a boundary layer where the
vertical gradient of the horizontal velocity is the major
source of dissipation. Above this quasiboundary layer
region, however, there exists a region where Dd has a
peak and it is larger than Do. This is where the sheet
structures and fingers start to grow and the mechanism of
large dissipation is essentially the same as the high
dissipation rate near the free-slip boundary.
In conclusion, our results suggest that the vertically

bounded fingering DDC is insensitive to different velocity
boundary conditions, i.e., the no-slip or free-slip types, in
the sense that for different boundary conditions (i) the flow
morphology is basically the same and (ii) the Nusselt
numbers of the two scalars and the Reynolds number
exhibit similar dependences on RaS. The free-slip boundary
conditions allow stronger salt fingers, which results in
higher scalar transfers and flow velocity. Despite the fact
that the tangential shear stress is eliminated at the free-slip
boundaries, in a thin layer adjacent to the boundaries the
local dissipation rate can be higher than that for the no-slip
cases. The large dissipation near the free-slip boundaries is
dominated by the contributions from the diagonal compo-
nents of the strain rate tensor, which are associated to the
converging or expanding flows in the horizontal directions
induced by the vertical motions of the salt fingers.
Two important indications can be obtained from the

current study. First, the experiments for the DDC flows
bounded by no-slip walls can still provide useful informa-
tion, especially for the scaling laws and salt fingers in the
bulk region. Only the prefactors should be reevaluated for
ocean salt-finger layers. Second, the high dissipation rate
near the free-slip boundaries implies that large dissipation
is also likely to exist at interior interfaces, such as the
boundaries of ocean salt-finger layers.
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FIG. 5. The contours on a horizontal plane near the bottom
plate at z=L ¼ 0.005 for the flow field shown in Fig. 2(b) with the
free-slip boundary condition. (a) The vertical velocity u3, (b) the
salinity s, and (c) Dd ≡ Σi¼jðSijSijÞ, which dominates the local
dissipation rate.
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