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We predict and study a new type of three-dimensional soliton: asymmetric rotating and precessing stable
topological-dissipative-optical localized structures in homogeneous media with saturable amplification and
absorption. The crucial factor determining their dynamics is the ratio of the diffusion coefficients
characterizing the frequency dispersion and angular selectivity (dichroism) of the scheme. These vortex
solitons exist and are stable for overcritical values of the selectivity coefficients and can be realized in lasers
of large sizes with saturable absorption.
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An important class of essentially nonlinear wave phe-
nomena is presented by solitons, stable field structures
localized in nonlinear homogeneous media or media with
periodic variation of their characteristics due to the balance
between linear spreading and nonlinear focusing. The
limiting case of nonlinear localization—over all three
spatial dimensions—corresponds to three-dimensional
(3D) solitons, or bullets. Solitons are known in many
fields of physics, hydrodynamics, chemistry, and biology,
among others [1]. However, investigating them is easier in
optics due to recent progress in laser and optical materials
technologies, as well as because of the relative simplicity of
nonlinear optical and laser schemes [2]. Nevertheless, even
in optics, the demonstration of 3D solitons, especially
topological ones, presents a challenge and needs develop-
ment of new approaches.
Solitons are divided into two large subclasses:

conservative (in schemes without significant dissipative
factors) and dissipative (with essential energy inflow and
outflow). Fundamental 3D-conservative solitons are pos-
sible in homogeneous media with saturable [3] or nonlocal
[4] nonlinearity. In optics, they are known as “light bullets”
[5]. Experimentally and numerically, discrete fundamental
and vortex weakly unstable conservative localized struc-
tures were found in arrays of coupled optical waveguides
[6,7]. However, their topological counterparts, like knotted
solitons [8,9], are known only for multicomponent fields
[10,11]. Stable localized conservative structures can also
exist in nonlinear media with localized inhomogeneity
[12–17], but such structures are not, strictly speaking,
self-localized. Therefore classification of these structures
as solitons is under question; the term “nonlinear defect
modes” is more appropriate.
A natural way to construct topological 3D solitons is

provided by the use of dissipative factors to ensure extra
robustness to dissipative solitons. In fact, 3D fundamental-

dissipative solitons and their complexes were found in
[18–24], and vortex solitons with axially symmetric inten-
sity distributions were reported in [25,26]. Knotted dissipa-
tive discrete solitons of arbitrary high complexity were
presented in [27]. The dissipative solitons are
“calibrated,” with sizes forming a discrete set of values; this
is contrary to conservative solitons, which have a corre-
sponding continuous spectrum. Additionally, these solitons
obey a nontrivial internal structure determined by complex
field of energy flows. The topology of these flows allows one
to distinguish betweenweak and strong couplings of solitons
and to reveal the connection between the symmetry and type
ofmotionof soliton complexes [28],which canbe curvilinear
even in homogeneous environment [29,30]. Another conse-
quence of the spectrum discreteness is that dissipative
solitons of classical fields can mimic elementary particles
in quantum field theory with the discrete spectrum of their
characteristics [31]. The requirement of energy inflow and
outflow balance can then correlate with the hypothesis of the
existence of “positive” and “negative” dark energies.
The goal of this Letter is to present a new type of soliton

—asymmetric rotating and precessing 3D-dissipative-
vortex-optical solitons in a homogeneous active or passive
(with nonlinear amplification and absorption) medium.
We consider the propagation of long and large (as

compared to the main optical period and wavelength,
i.e., the slowly varying envelope approximation) optical
radiation through a continuous medium with saturable
amplification (laser gain) and absorption. We assume also
that the radiation pulse duration exceeds the relaxation
times (medium with fast nonlinearity) and radiation is
nearly linearly polarized. Then, the dimensionless form of
the governing equation for the electric field envelope E is

∂E
∂z ¼

�
ðiþ d⊥Þ∇2⊥ þ ðiþ d∥Þ

∂2

∂τ2
�
Eþ fnlðjEj2ÞE: ð1Þ
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Here z is the Cartesian coordinate along the direction of the
predominant radiation propagation, ∇2⊥¼∂2=∂x2þ∂2=∂y2
is the transverse Laplacian, x and y are the transverse
Cartesian coordinates, and τ ¼ t − z=vg is the time in the
system of coordinates moving along the z axis with the
group velocity vg. The coefficient d∥ describes the fre-
quency dispersion of medium gain or loss. The medium
dichroism, i.e., the angular selectivity of amplification or
absorption, is represented by the coefficient d⊥.
“Diffusion” coefficients d⊥ and d∥ are positive (otherwise,
the propagation of plane monochromatic waves would be
unstable even in linear media). We suppose that these
coefficients are small, 0 < d⊥, d∥ ≪ 1. Finally, the non-
linear function fnl of radiation intensity I ¼ jEj2 corre-
sponds to intensity-dependent medium amplification and
absorption. For a two-level scheme of active (laser gain)
and passive (saturable absorber) centers doped in the
medium, this function, for the case of exact frequency
tuning, is [32]

fnlðjEj2Þ ¼ −1þ g0
1þ jEj2=β −

a0
1þ jEj2 : ð2Þ

Here g0 (a0) is small-signal gain (absorption) coefficient,
the intensity I is normalized on the intensity of absorption
saturation, β is the ratio of intensities of saturation for gain
and absorption, and the term−1 describes nonresonant linear
absorption (after the normalization of the longitudinal
coordinate z). Bright localized structures can exist only if
the linear absorption overcomes the small-signal gain:
fnlð0Þ ¼ g0 − 1 − a0 < 0; then, the trivial solution of
Eq. (1), E ¼ 0, is stable. Another restriction on the coef-
ficients comes from the condition of bistability: a nontrivial
solution Ih > 0 of the equation fnlðIhÞ ¼ 0 should exist
corresponding to the homogeneous balance of gain and loss
[28]. For fnl given by Eq. (2), Ih ¼ 0.5β½ðu2 − vÞ1=2 − u�,
where u ¼ 1 − g0 þ ð1þ a0Þ=β and βv ¼ 4ð1þ a0 − g0Þ.
Equation (1) has translational symmetry, i.e., symmetry

with respect to shifts of coordinates x, y, z and time τ,
and with respect to rotation around the axis τ. It is also
invariant to the inversions x → −x, y → −y, and τ → −τ.
Correspondingly, the medium is homogeneous, but Eq. (1)
has no Galilean symmetry due to effective friction (for d⊥,
d∥ > 0). In the space r ¼ ðx; y; τÞ, Eq. (1) has spherical
symmetry if d⊥ ¼ d∥. Specifying various “initial condi-
tions” E0 ¼ Eðr; z ¼ 0Þ, one can obtain different field
structures formed with increasing z. The structures are
characterized by the following integral quantities: energy
WðzÞ ¼ R jEðr; zÞj2dr, vector of coordinates of the struc-
ture energetic center RcðzÞ ¼

R
rjEðr; zÞj2dr=W, torque

MðzÞ ¼ R
r × ImðE�∇rEÞdr, and inertia tensor ĴðzÞ,

Jij ¼
R ðδijr2i − rirjÞjEðr; zÞj2dr (M and Ĵ are calculated

with respect to the structure center Rc, and δij is the
Kronecker symbol). Three mutually orthogonal principal

axes of tensor Ĵ (its eigenvectors) form a trihedron
characterizing the orientation of the intensity distribution.
The trihedron orientation allows one to introduce a
z-dependent vector of angular velocity Ω. A different
definition of the angular velocity ΩS ¼ Ĵ−1M characterizes
the rotation of energy flows; these two definitions do not
coincide in the general case. Additional information on the
structure orientation is provided by the angle θ between
the axis τ and the vector of angular velocity Ω.
For dissipative structures, the distribution of energy flow,

or averaged Poynting vector in space r, is important. This is
SðrÞ ¼ ImðE�∇rEÞ ¼ I∇rΦ, where Φ ¼ argE is the radi-
ation phase; its divergence∇rS in point r indicates whether
this point is an energy source or sink [33]. Similar to the 2D
case [28], the type of dissipative-localized-structure motion
depends on the symmetry of the intensity and energy flow
distributions. For example, if these stable distributions
are invariant to rotation along the axis τ on an angle
2π=N with integer N ¼ 2; 3;…, then the center’s velocity,
Vc ¼ dRc=dz, is directed along axis τ. Correspondingly,
in the degenerate case d⊥ ¼ d∥, the structure with two or
more such axes of rotation is motionless (in the moving
coordinate system).
Below we present the results of numerical solution of

Eq. (1) with initial toroidal intensity and phase distribution
corresponding to a vorticity line with topological charge
m ¼ 1. The parameters used (β ¼ 10, a0 ¼ 2) are typical
for fundamental symmetric 3D [32] and vortex 2D [29,33]
laser solitons.
In the case d⊥ ¼ d∥ ¼ d, we vary the diffusion coef-

ficient in the wide interval 0.004 < d < 0.1 and use, as the
initial condition, the axially symmetric vortex toroidal
distribution with the vorticity line (of phase dislocations,
E ¼ 0) as the straight line. At the first stage, z ∼ 102, a
metastable structure is established, but for larger propaga-
tion distances the symmetry is broken and the vorticity line
curves [34]. Finally, a solidlike localized structure is
established with azimuthal asymmetry, an inversion center,
and three different principal moments of inertia (see Fig. 1).
The vector of angular velocity Ω preserves its absolute
value and direction, Ω ¼ const, while the direction of the
principal axis of inertia J1 circumscribes periodically a
cone with axis Ω; the period of this “fast” rotation is
zrot ∼ 70 (see insets in Fig. 3). Correspondingly, the
structure orientation and angle θ can be arbitrary,
0 < θ < π=2. The inversion of coordinates, as illustrated
in Figs. 1(c) and 1(d), gives structures rotating in the
opposite direction. Solidlike 3D rotating solitons are stable
inside the parameter domain shown in Fig. 2(a); the
stability is confirmed by Figs. 2(c) and 2(d). Outside the
stability domain, to the left from its boundary, the structure
collapses. Then, as a rule, two metastable antiphase bullets
arise that disappear for longer propagation distances [38].
Near the right boundary, the structure remains localized,
but begins to oscillate. At larger deviations from the
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stability domain, modulation depth increases, the structure
widens, its boundaries move away. Finally, the intensity in
the infinite domain of the space r is switched up to the level
corresponding to the intensity of homogeneous lasing Ih
[39]; this is similar to the behavior near the right boundary
of stability in Fig. 2(b) with an increase of g0. In the limit
of zero diffusion coefficient d → 0, no stable 3D rotating
solitons were found.
Next, for d⊥ ≠ d∥, there is the preferred axis τ. Then

stationary, or solidlike rotating localized, structures are
possible only if their angular velocity Ω is directed along
the axis τ. The resulting structure type depends crucially
on the ratio of the diffusion coefficients d⊥ and d∥. For
d⊥ < d∥, similarly to the previous case, a solidlike vortex
structure rotating with a constant angular velocity is
established. Contrary to the degenerate case, its angular
velocity is directed definitely, along the axis τ; therefore,
the angle θ ¼ 0, see the right inset in Fig. 3(a) and [39].
Because of the inversion symmetry, an antiparallel
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FIG. 1. (a) Instantaneous (at fixed propagation distance z)
toroidal isointensity surface (where I=Imax ¼ 0.27) of a solidlike
asymmetric rotating soliton. The angular velocity of rotation of
intensity distribution is constant, Ω ¼ jΩj ¼ 0.092, with a
corresponding rotation period Trot ¼ 68, while the value
of the integral angular velocity is ΩS ¼ jΩSj ¼ 0.0081 and the
rotation period is TS ¼ 2π=ΩS ¼ 772. The principal axes J1;2;3
and the torque M rotate around Ω; the principal values
of the inertia tensor are J1 ¼ 33, J2 ¼ 22.1, J3 ¼ 21.7, and
M ¼ jMj ¼ 0.244. The scale on the right shows the field phase.
(b) Two toroidal surfaces, one embedded in the other, of
vanishing divergence of the Poynting vector, separating domains
of energy sources and sinks. (c) One half of the soliton at (a).
Panel (d) is obtained from (c) by the inversion of coordinate
x → −x. The parameters are g0 ¼ 2.135 and d ¼ 0.06.
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FIG. 2. (a) Stability domain of solidlike 3D solitons (shaded).
Localized structures disappear to the left of the domain and
they oscillate to the right. (b) Soliton energy vs small-signal
gain g0 for d ¼ 0.06; in the left shaded zone there are no stable
localized structures. (c),(d) Transient process for (c) the
maximum principal momentum of inertia J1 and (d) energy
W of the localized structure; the parameters are g0 ¼ 2.135 and
d ¼ 0.06.
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FIG. 3. (a) Dependence of the angle θ on the diffusion
coefficient d∥ for fixed d⊥ ¼ 0.07 and g0 ¼ 2.137. The vertical
straight line corresponds to the angular velocity arbitrary ori-
entation in the degenerate case d⊥ ¼ d∥. The curved closed
dashed (rose) line in the left inset illustrates the slow precession
and nutation of the angular velocity direction. For small diffusion
coefficients d∥ < 0.008 (the shaded zone), there are no quasista-
tionary localized structures, see Fig. 4(a). Three cones in the
insets show the schematically fast rotation of the principal axis of
inertia around the direction of the angular velocity Ω; the
corresponding dynamics of isointensity surfaces is presented in
[35–37]. (b) Reorientation of the soliton: the cones are similar to
those in the insets to panel (a). The left (red) cone is for the initial
orientation at z1 ¼ 18 000 and the right (green) cone represents
z2 ¼ 40 000; the (blue) curve with arrows shows the slow
evolution of the angular velocity direction, with d∥ ¼ 0.08.
(c) Evolution of the direction of angular velocity for d∥ ¼ 0.065.
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orientation of the angular velocity is also possible. Such an
orientation is restored even for large initial deviations, see
Fig. 3(b). In our simulations, a parallel or antiparallel
orientation of Ω and axis τ is established depending on
initial conditions. The transient length ztr ∼ 20000.
For the opposite ratio of the diffusion coefficients

d⊥ > d∥, the orientation of angular velocity Ω along the
axis τ is energetically unfavorable and found to be unstable.
Then, there are no possible stationary structures featuring
no variation in their shape, energy, and other characteristics
with propagation (Fig. 4). However, the modulation depth
can be small for small diffusion coefficients and such
structures are quasistationary. As illustrated in Fig. 3(a),
with decreasing d∥, the angular velocity direction first turns
to the plane ðx; yÞ (orientation within this plane is indif-
ferent). The transient process is shown in Fig. 3(c), where
the initial orientation is along the axis τ and the final
orientation is orthogonal to the initial one.
A further decrease in d∥ results in the instability of this

orientation as well. Instead, in the range 0.02 < d∥ < 0.035,
the regime of slow precession arises with precession period
zprec ∼ 40 000. The angular velocity averaged over the
precession period is directed along the axis τ. During the
period, the angular velocity forms a coniclike surface. In
the narrower range 0.035 < d∥ < 0.04, the orientation of
the structure angular velocity is intermediate, see Fig. 3(a).
For smaller d∥, more complex dynamics with prolonged
chaoticlike transient process for still localized vortex struc-
ture is observed [Fig. 4(a) and [40]].
In conclusion, we have revealed—to our knowledge, for

the first time—the existence of stable asymmetric rotating
and precessing dissipative-optical-vortex-3D solitons, i.e.,
“dissipative precessons.” These structures arise naturally as
a result of the instability of symmetric vortex solitons and
have a nontrivial internal structure presented by the

divergence of the Poynting vector. The results underline
the close connection between the type of motion and
symmetry of localized-dissipative structures that can be
useful in other fields of physics, chemistry, and biology,
where the dissipative dynamics is important.
The unusual solitons presented above can be formed in

lasers with saturable absorption and long ring cavities. The
transverse size of the laser should exceed the soliton width
(about 10 μm) and the soliton round-trip time for the case
considered, and the pulse duration should be longer than
medium relaxation times. Multimode fiber lasers are
promising for such experiments [41,42]. The transition
to shorter pulses and cavities results in the possibility of the
generation of new types of self-localized structures as
shown by the example of two-dimensional laser schemes
[28]. Of special interest is the dynamics of asymmetric
solitons in dynamic cavities [43,44], with a rich variety of
scenarios of orientation-dependent reflections of asymmet-
ric solitons from oscillating cavity mirrors.
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