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We discuss the determination of the strong coupling αMSðmZÞ or, equivalently, the QCD Λ parameter. Its
determination requires the use of perturbation theory in αsðμÞ in some scheme s and at some energy scale μ.
The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As
one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a
scheme that allows us to nonperturbatively reach very high energies, corresponding to αs ¼ 0.1 and below.
We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter,
while data around αs ≈ 0.2 are clearly insufficient to quote such a precision. It is important to realize that
these findings are expected to be generic, as our scheme has advantageous properties regarding the
applicability of perturbation theory.
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Introduction.—The fundamental parameter of the strong
interactions, the coupling αMSðμÞ ¼ ḡ2

MS
ðμÞ=ð4πÞ, is an

essential input parameter for theory predictions of high-
energy processes, in particular for the physics at the LHC
[1–3]. Conventionally, the running αMSðμÞ is quoted at the
electroweak scale, μ ¼ mZ. There the coupling is weak,
α ¼ Oð1=10Þ, and perturbation theory (PT) is usually
accurate. In particular, αMSðmZÞ is essentially equivalent
to the renormalization-group-invariant Λ parameter

ΛMS ¼ φMSðḡMSðμÞÞ × μ; ð1Þ
because the function

φsðḡsÞ ¼ ðb0ḡ2sÞ−b1=ð2b20Þe−1=ð2b0ḡ2sÞ

× exp

�
−
Z

ḡs

0

dx

�
1

βsðxÞ
þ 1

b0x3
−

b1
b20x

��
ð2Þ

is known precisely by replacing the renormalization
group β function by its perturbative expansion

βperts ðgÞ ¼ −g3
Plb−1

n¼0 bn;sg
2n; in the MS scheme, βpert

MS
ðgÞ

is known up to lb ¼ 4 loops [4,5].
At lower energies, μ ≪ mZ, the perturbative uncertainty

in approximating βs ≈ βperts in Eq. (2) is generally not
negligible. It is ΔΛs=Λs ¼ Δφs=φs ¼ clbα

lb−1 þ � � �, with
coefficients clb , which are, for lb ≤ 4, of order one in the
MS scheme and expected to be so in “good” schemes in
general.
While the MS scheme makes sense only perturbatively,

physical schemes defined beyond the perturbative
expansion are easily derived from short-distance QCD
observables OsðμÞ ¼ cs1ḡ

2

MS
ðμÞ þO(ḡ4

MS
ðμÞ) via

ḡ2sðμÞ≡OsðμÞ=cs1 ¼ ḡ2
MS

ðμÞ þO(ḡ4
MS

ðμÞ): ð3Þ

It is clear that high energies μ (small αs) and at least lb ¼ 3
are needed if one aims for a precision determination of
αMSðmZÞ. Replacing high energy by just a larger lb is
dangerous because the perturbative expansion is only
asymptotic, not convergent, and nonperturbative “correc-
tions” can be large. In particular, whether one has lost
control is difficult to detect because our knowledge of
nonperturbative physics is very incomplete. Thus, it is a
challenge to reach an accuracy of a few percent in ΛMS
equivalent to subpercent accuracy in αMSðmZÞ.
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Unfortunately, the determinations that quote the smallest
uncertainties do typically not come from observables at
large μ, and uncertainties are dominated by systematics
such as unknown higher-order perturbative and nonpertur-
bative terms. Both the Particle Data Group [6] and the
Flavour Lattice Averaging Group [7] are, therefore, not just
taking weighted averages of the individual determinations
to arrive at their world averages.
Here we consider a family of observables (schemes)

where lattice simulations allow one simultaneously to reach
high precision and high energy before using PT. Then, PT
at μ ¼ OðmZÞ can be employed with confidence. In
addition, one can check its applicability at lower scales.
The crucial feature enabling the study of PT at high energy
with continuum extrapolated nonperturbative lattice results
is that we use a finite volume renormalization scheme [8,9].
QCD is considered inside a small volume of linear extent L
with boundary conditions and observables that do not
contain any other scale. Details will be presented below.
The renormalization scale then is

μ ¼ 1=L; ð4Þ

and the continuum limit of lattice simulation results is
easily taken for L=a ≫ 1, with modestly sized lattices. This
is the strategy of the ALPHACollaboration, but so far it has
been mostly restricted to unphysical models with an
insufficient number of quark flavors [9–11]. For the
interesting case of Nf ¼ 3 QCD, the strategy was applied
by the CP-PACS Collaboration [12]. We now have very
precise results for Nf ¼ 3 that allow us to see important
details previously hidden by uncertainties (see also [13]).
In this Letter we discuss the most essential step: the

accuracy of PT for couplings α ≲ 0.2 and our resulting
precision for Λ. We will see that it is crucial to non-
perturbatively reach α ≈ 0.1 to have confidence in PT at the
3%–4% level in Λ. On the other hand, at α ≥ 0.15 and
using the three-loop beta-function, one of our schemes
(ν ¼ −1=2) shows a 10% systematic error in Λ. This is not
a statistical fluctuation, as we will demonstrate by Eq. (21).
Given that a priori our scheme has favorable properties

for PT and that other tests of perturbation theory with
similar precision and similarly small α are presently not
available, our result gives reason for concern in determi-
nations of αMSðmZÞ from μ values of a few GeV. This kind
of lack of accuracy of PT may be one of the sources of the
spread of results reviewed in [6].
The SF scheme.—Our scheme is based on the so-called

Schrödinger functional (SF) [14]. There are several intro-
ductory texts on the topicwith emphasis on different aspects,
including the general field-theoretic concept [15], detailed
descriptions [16,17], and a review of concepts, history, and
recent results [18]. Here we just summarize those aspects
which are needed to judge our findings below. Dirichlet
boundary conditions are imposed in Euclidean time,

AkðxÞjx0¼0 ¼ Ck; AkðxÞjx0¼L ¼ C0
k; ð5Þ

for k ¼ 1, 2, 3. The gauge potentialsAμ are taken periodic in
space with period L while quark fields are included as
described in [19]. (In particular, the periodicity angle θ
introduced in [20] is set to θ ¼ π=5). The six dimensionless
matrices

LCk¼ idiag

�
η−

π

3
;η

�
ν−

1

2

�
;−η

�
νþ1

2

�
þπ

3

�
;

LC0
k¼ idiag

�
−(ηþπ);η(νþ

1

2)þπ

3
;−η(ν−

1

2)þ2π

3

�
;

just depend on the two real parameters η, ν, which multiply
the Abelian generators of SU(3).
With these boundary conditions, the field which mini-

mizes the action is unique up to gauge equivalence [9] and
denoted by Aμ ¼ Bclass

μ . In the temporal gauge, B0 ¼ 0, it is
given by Bclass

k ðxÞ ¼ Ck þ ðC0
k − CkÞx0=L and corresponds

to a constant color electric field. A family of couplings [21],
ḡν, is then obtained by taking 1=Oν in Eq. (3) to be the η
derivative of the effective action. This yields a simple path
integral expectation value,

h∂ηSjη¼0i ¼
12π

ḡ2ν
; ð6Þ

which is well suited for a Monte Carlo evaluation in the
latticized theory. Small fluctuations around the background
field generate the nontrivial orders in PT. It is worth
pointing out that the whole one-parameter family of
couplings can be obtained from numerical simulations at
ν ¼ 0, as the ν dependence is analytically known,

1

ḡ2ν
¼ 1

ḡ2
− νv̄; ð7Þ

in terms of the ν ¼ 0 observables ḡ2 ≡ ḡ2ν¼0 and v̄.
Advantageous properties of these couplings are:

1.Δstatḡ2ν ¼ sða=LÞḡ4ν þ Oðḡ6νÞ, forΔstat, the statistical error,
at a given length of the Monte Carlo sample. This property
makes it possible to maintain high precision at high energy.
2. The typical ∼μ−1; μ−2 renormalon contributions [22] are
absent because the finite volume provides an infrared
momentum cutoff. Instead, the leading known nonpertur-
bative contribution is due to a secondary stationary point of
the action [23] at g20½SðBsecÞ − SðBclassÞ� ¼ 32.9. It generates
corrections to PT of order

expð−2.62=αÞ ∼ ðΛ=μÞ3.8; ð8Þ

which evaluates toOð10−6Þ for α ¼ 0.2. At such values of α,
fields with nonzero topology are even further suppressed
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given that g20½SjQj≥1 − SðBclassÞ� ≥ 6π2 [9,14]. 3. The β
function is known, including its three-loop term,

ð4πÞ3 × b2;ν ¼ −0.06ð3Þ − ν × 1.26; ðNf ¼ 3Þ; ð9Þ
and for reasonable values of ν the three-loop term is of order
one as it is in the MS scheme. 4. As we will see,
discretization effects are very small; at tree level of pertur-
bation theory they are O(ða=LÞ4). They are known to two-
loop order in PT [24] and we can subtract those pieces [25].
The downside of the SF scheme is that the coefficient

sða=LÞ diverges like ðL=aÞ1=2þz for large L=a and is not
that small in general. Here z is the dynamical critical
exponent of the algorithm while the 1=2 in the exponent is
due to the variance of the observable [25]. High statistics is
needed and our computation is limited to L=a ≤ 24. A
second issue is the acceleration of the approach to the
continuum limit through Symanzik improvement. With our
Dirichlet boundary conditions the Symanzik effective
Lagrangian contains terms located at the time-boundaries.
These are responsible for OðaÞ effects. We cancel them by
corresponding improvement terms with coefficients ct and
~ct known only in PT, see below.
Step scaling functions and Λ parameter.—The non-

perturbative energy dependence of finite volume couplings
is constructed from the step scaling function [8]

σνðuÞ ¼ ḡ2ν(1=ð2LÞ)jḡ2νð1=LÞ¼u;m¼0; ð10Þ

where m ¼ 0 ensures the quark-mass independence of the
scheme [26]. The step scaling function corresponds to a
discrete version of the β function and is computed as the
continuum limit a=L → 0 of its lattice approximants
Σνðu; a=LÞ. The conditions ḡ2νð1=LÞ ¼ u and m ¼ 0 then
refer to a ðL=aÞ4 lattice, and fix the bare coupling and bare
quark mass of the theory. ḡ2νð1=ð2LÞÞ is to be evaluated for
the same bare parameters on a ð2L=aÞ4 lattice.
We will use the ν ¼ 0 scheme for a reference, dropping

the index ν. The scale L0 is defined by a value u0 and the
condition

ḡ2ð1=L0Þ ¼ u0: ð11Þ

The solution of the implicit equation

uk ¼ σðukþ1Þ; ð12Þ
for ukþ1, k ¼ 0; 1;…, gives a series of couplings
uk ¼ ḡ2ð2k=L0Þ. With a few steps, one reaches
μ ¼ 1=Ln ¼ 2n=L0 ¼ OðmZÞ, and the perturbative φ at
this high scale will give a good approximation to L0Λ,

L0Λ ¼ 2nφð ffiffiffiffiffi
un

p Þ: ð13Þ

Note that, thanks to Eq. (7) and the exact relation between
Λ parameters [9,20]

rν ¼ Λ=Λν ¼ e−ν×1.25516; ð14Þ

the same combination L0Λ can be obtained in any scheme
with ν ≠ 0. Whether different values of ν, numbers of steps
(n), and perturbative orders (lb) give consistent results is an
excellent way to test the reliability of perturbation theory.
Simulations.—We used the standard Wilson plaquette

action and three massless OðaÞ-improved [27,28] quarks
simulated by a variant of the OpenQCD code [29,30]. At eight
couplings ḡ2ð1=LÞ in the range 1.11–2.02, we simulated
pairs of lattices L=a; 2L=a with L=a ¼ 4, 6, 8 and at three
couplings we also included L=a ¼ 12.
Between 80 000 and 300 000 independent Monte Carlo

measurements were taken on each lattice. As we have
already noted, nontrivial topology is very suppressed in
these small volumes [31]. Therefore, topology freezing
[32,33] is irrelevant here.
A critical issue for any lattice computation is the removal

of discretization effects. In preparation of our continuum
extrapolations, we apply both Symanzik improvement of
the action and perturbative improvement of the step scaling
function [25]. In comparison to earlier work, we here
propagate the estimated uncertainty of thoseOðaÞ improve-
ment coefficients that are only known perturbatively into
the errors of the step scaling functions. They can then be
assumed to be free of linear a effects within their errors.
Details are found in [34].
Continuum extrapolations and results.—As the residual

linear a effects are treated as an uncertainty, we can proceed
with continuum extrapolations linear in a2. First, we look at
the data in Fig. 1. They are statistically compatible with
having no a effects for L=a ≥ 6; forNf ¼ 0, this was found
with similar precision for L=a ≥ 5 (see Fig. 3 of [35]).

FIG. 1. Continuum limit of the step scaling function
ΣðiÞðu; a=LÞ=u with i ¼ 2 loop improvement and for ν ¼ 0.
As an illustration, a constant (nρ ¼ 0, dashed, fit G) and a linear
(nρ ¼ 2, fit C) continuum extrapolation are shown. Continuum
extrapolated results include the errors due to ct and ~ct (cf. text).
The star symbols show the perturbative σ computed from the
three-loop βpert.
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Both the continuum limit of the step scaling function and
its cutoff effects are smooth functions of the coupling. This
motivates global fits of the form

ΣðiÞ
ν ðu; a=LÞ ¼ σνðuÞ þ ρðiÞν ðuÞða=LÞ2; ð15Þ

where i is the order of PT to which cutoff effects are
removed [34]. We performed various such fits in order to
assess the systematic errors that result from the assump-
tions made in the fit functions. We parameterize the cutoff
effects by a polynomial in u, with the correct asymptotics
for small u,

ρðiÞν ðuÞ ¼
XnðiÞρ
k¼1

ρðiÞν;ku
iþ1þk; ð16Þ

where the case of neglecting cutoff effects is covered by

nðiÞρ ¼ 0. The continuum step scaling function is naturally
parameterized by a polynomial in u,

σνðuÞ ¼ uþ u2
X3
k¼0

skuk: ð17Þ

Lower-order coefficients are fixed to their known pertur-
bative values while s3 (“nc ¼ 1”) or s2, s3 (“nc ¼ 2”) are fit
parameters. A selection of such fits are illustrated in Table I.
Instead of the parameters of the continuum step scaling
function, the table directly shows the extracted L0Λ, where
L0 is defined through Eq. (11) and the value u0 ¼ 2.012.
Recalling Eq. (7) and using v̄ ¼ 0.1199ð10Þ (see next
section), we have

ḡ2νð1=L0Þ ¼ 2.012½1 − 0.1199ð10Þ × 2.012ν�−1: ð18Þ

Apart from the form of the fit, L0Λ depends on the value of
n, where Eq. (13) with βν ¼ βpertν is used. Because we insert
βpertν at three loop, the residual dependence on the coupling
is Oðα2(1=LnÞ).

The observed behavior, Fig. 2, is consistent with a
dominatingly linear dependence of L0Λ on α2ð1=LnÞ.
For ν ¼ 0 the slope is not very significant and disappears
around ν ¼ 0.3, but for ν ¼ −0.5 it is quite large and
outside errors.
This result suggests performing alternative fits, where

the continuum step scaling function is parameterized by an
effective four-loop β function, adding a term beff3 g9 to the
perturbative known ones. The determined L0Λ are then
automatically independent of n, and we include beff3 instead
of un¼4 in the table. For ν ¼ −0.5 the effective fit value is
larger than it should be in a well-behaved perturbative
expansion.
We will come back to this issue shortly, but first we

give our result for L0Λ. We take the standard polynomial fit
to σ (for ν ¼ 0) with αn ≈ 0.1 (un ≈ 1.2). A typical
perturbative error of size ΔðΛLnÞ ¼ α2nΛLn is then a factor
of 3 or more below our statistical errors. We quote [with
ḡ2ð1=L0Þ ¼ 2.012]

L0Λ ¼ 0.0303ð8Þ → L0Λ
ð3Þ
MS

¼ 0.0791ð21Þ; ð19Þ

with the known [9,20] ΛMS=Λ. This is the result of fit C. It
is in perfect agreement with all variations of the global fit,
even with fit G, which neglects all cutoff effects but uses
only data with L=a ≥ 8. It has a rather conservative error. If
an even more conservative result is desired, one may take
the one of fit D, L0Λ ¼ 0.0303ð13Þ.
Accuracy of perturbation theory.—While beff3;ν is large for

ν ¼ −0.5, it does have an error of around 50%. A much
better precision can be achieved by directly considering the
observable

ωðuÞ ¼ v̄jḡ2ð1=LÞ¼u;m¼0 ¼ v1 þ v2uþOðu2Þ; ð20Þ

with coefficients v1 ¼ 0.14307; v2 ¼ −0.004693 [11]. In
contrast to the step scaling function, ωðuÞ does not require

TABLE I. Results for ν ¼ 0 in the upper part.

Fit u4 i ðL=aÞjmin nðiÞρ nc L0Λ × 100 beff3 × ð4πÞ4 χ2 Degrees of freedom

A 1.193(4) 0 6 2 1 3.04(8) 14.7 16
B 1.194(4) 1 6 2 1 3.07(8) 14.2 16
C 1.193(5) 2 6 2 1 3.03(8) 14.5 16
D 1.192(7) 2 6 2 2 3.03(13) 14.5 15
E 2 6 2 1 3.00(11) 4(3) 14.6 16
F 2 8 1 1 3.01(11) 4(3) 12.7 9
G 1.191(11) 2 8 0 2 3.02(20) 13.0 9
H 1 6 2 1 3.04(10) 3(3) 14.1 16

Fit ν i ðL=aÞjmin nðiÞρ nc L0Λ × 100 beff3;ν × ð4πÞ4 χ2 Degrees of freedom

H −0.5 1 6 2 1 3.03(15) 11(5) 10.4 16
H 0.3 1 6 2 1 3.04(10) 0(3) 20.0 16
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pairs of lattices, so that the continuum extrapolation can be
performed using data for the entire range of lattice sizes
L=a ¼ 6, 8, 10, 12, 16, 24. Improvement and fits for
obtaining the continuum limit are carried out in analogy to
those of Σν. Figure 3 shows the result of two different fits
with fit parameters dk in ωðuÞ ¼ v1 þ v2uþ d1u2 þ
d2u3 þ d3u4 and in ωðuÞ ¼ v1 þ d1u1 þ d2u2 þ d3u3þ
d4u4. The overall band of the two fits may be taken as a
safe estimate of the continuum limit. As an example we find
ωð2.012Þ ¼ 0.1199ð10Þ for both fits, leading to Eq. (18). In
the above analysis we did not use data with L=a ¼ 6.
Including them yields only tiny changes and excellent χ2

values.
A good measure of the deviation from two-loop

perturbation theory is

½ωðḡ2Þ − v1 − v2ḡ2�=v1 ¼ −3.7ð2Þα2 ð21Þ

at α ¼ 0.19. It is quite large and statistically significant
beyond any doubt. If one attempts to describe this by
perturbation theory, the three-loop coefficient v3 has to be
too large for perturbation theory to be trustworthy at
α ¼ 0.2. Again, we come to the conclusion that α ≈ 0.1
needs to be reached nonperturbatively before perturbation
theory becomes accurate.

Summary and conclusions.—Our chosen definition of
αsðμÞ allows us to compute it with very good precision
through lattice Monte Carlo simulations. In particular, we
have controlled the errors due to the discretization of the
theory at large μ. Known nonperturbative corrections are
parametrically very small, Oðe−2.6=αÞ. In other words, we
have an excellent scheme to test the accuracy of PT in a
given region of α.
In fact, we have a family of schemes, depending on ν.

For small positive ν, the couplings follow perturbation
theory very closely in the full investigated range
0.1 ≤ α ≤ 0.2, as illustrated by the flatness of Λ in
Fig. 2 extracted from Eq. (13) with the three-loop β
function.
However, for negative ν, e.g., ν ¼ −0.5, values of α just

below 0.2 are not small enough to confirm perturbative
behavior. The observable v̄, Fig. 3, shows that the α
dependence seen in Fig. 2 is not just a statistical fluctuation.
We could take the continuum limit of v̄ with very high
precision and Eq. (21) shows a clear deviation from the
known perturbative terms, corresponding to lb ¼ 3, at
α ¼ 0.19.
We conclude that it is essential to reach α ¼ 0.1 in order

to be able to achieve a precision around 3% for the Λ
parameter. Fortunately, we have access to that region and
can quote such an accuracy in Eq. (19). While of course
schemes exist where three-loop running holds accurately
down to smaller energies—for example, as far as we can
tell, ν ¼ 0.3 produces flatness in Fig. 2—knowing whether
a chosen scheme possesses this property is difficult unless
one also has control over the α ≈ 0.1 region. Once this is
achieved, data at larger α become irrelevant.
We reported in this Letter a part of our determination of a

precise value for ΛMS. As our next step, we will soon
connect L0 to the decay constants of pion and kaon, as
explained above and in [36].
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FIG. 3. The function ωðḡ2Þ after continuum extrapolation,
covering the �1σ band of two fits described in the text.

FIG. 2. The dependence of the Λ parameter on the coupling, α.
From right to left, n ¼ 0; 1;…; 5 steps of nonperturbative step
scaling are performed to arrive at αðμÞ at μ ¼ 1=Ln, before using
perturbative running. From top to bottom the different symbols
correspond to ν ¼ −0.5, 0, and 0.3. We use i ¼ 1 loop improved
data and fit B; for ν ¼ 0, we also show i ¼ 2, fit C. Dotted lines
show linear dependence in α2 to guide the eye.
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