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We consider the creation of ’t Hooft–Polyakov magnetic monopoles by scattering classical wave packets
of gauge fields. An example with eight clearly separated magnetic poles created with parity violating
helical initial conditions is shown. No clear separation of topological charge is observed with
corresponding parity symmetric initial conditions.
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Magnetic monopoles are of key interest in current
research as they embody nonperturbative aspects of field
theories. Their rich physical and mathematical properties
have inspired continued investigations ever since Dirac first
proposed their existence (e.g., [1–4]). Dualities that relate
the spectra of particles and magnetic monopoles can be an
important element in solving strongly coupled problems
[5,6] and may also help understand the spectrum of
fundamental particles [7,8]. In particle physics, monopoles
necessarily arise in grand unified models of particle
physics, and the standard electroweak model contains field
configurations that correspond to confined monopoles [9].
The current investigation involves the interpretation of

magnetic monopoles in terms of particles. Can we create
magnetic monopoles by assembling particles? This prob-
lem is difficult because particles are the quanta in a
quantum field theory and magnetic monopoles are classical
objects in that field theory. No perturbative expansion of the
quantum field theory in powers of coupling constants can
describe magnetic monopoles because properties of the
magnetic monopole are proportional to inverse powers of
the coupling constant. (Recent work on resurgence in
quantum mechanics [10] offers a glimmer of hope that
divergences in the perturbative expansion may hold non-
perturbative information.) A more modest objective is to
study the creation of magnetic monopoles by scattering
classical waves, where the classical waves can themselves
be thought of as quantum states containing high occupation
numbers of quanta. This is the approach we take.
Past work on the creation of kinks in 1þ 1 dimensions

[11–17], on the decay of electroweak sphalerons [18,19],
and on the scattering and annihilation of magnetic monop-
ole antimonopole [20], together with results from mag-
netohydrodynamics (MHD) [21], offers some guidance on
initial conditions that may be suitable for creating magnetic
monopoles. We further explain these motivations when
describing our initial conditions.
We work with an SO(3) field theory, as considered by ’t

Hooft [22] and Polyakov [23], that contains a scalar field in
the adjoint representation, ϕa (a ¼ 1, 2, 3), and gauge
fields, Wa

μ, with the Lagrangian

L¼ 1

2
ðDμϕÞaðDμϕÞa−1

4
Wa

μνWaμν−
λ

4
ðϕaϕa−η2Þ2; ð1Þ

where

ðDμϕÞa ¼ ∂μϕ
a − igWc

μðTcÞabϕb ð2Þ

and the SO(3) generators are ðTaÞbc ¼ −iϵabc. The gauge
field strengths are defined by

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν: ð3Þ

Our numerical methods are borrowed from numerical
relativity [24]. We use temporal gauge Wa

0 ¼ 0 and treat
Γa ≡ ∂iWa

i as new variables whose evolution ensures that
the Gauss constraints are satisfied. The resulting classical
equations of motion that we want to solve are written as

∂2
tϕ

a ¼ ∇2ϕa − gϵabc∂iϕ
bWc

i − gϵabcðDiϕÞbWc
i

− λðϕbϕb − η2Þϕa − gϵabcϕbΓc; ð4Þ

∂tWa
0i ¼ ∇2Wa

i þ gϵabcWb
j∂jWc

i − gϵabcWb
jW

c
ij

−DiΓa − gϵabcϕbðDiϕÞc; ð5Þ

∂tΓa ¼ ∂iWa
0i − g2p½∂iðWa

0iÞ þ gϵabcWb
i W

c
0i

þ gϵabcϕbðDtϕÞc�; ð6Þ

where Wa
0i ¼ ∂tWa

i in the temporal gauge, DiΓa ≡ ∂iΓa −
gϵabcΓbWc

i , and g2p is a free parameter. Analytically, the
square brackets in Eq. (6) vanish due to the Gauss
constraints and the value of g2p is irrelevant. However,
the square brackets do not vanish when we discretize the
system and a nonzero value of g2p is critical to ensure
numerical stability [24]. After some experimentation we set
g2p ¼ 0.75 in our runs. We also set g ¼ 0.5, λ ¼ 1, and
η ¼ 1 in our numerical work.
The fields are evolved using the explicit Crank-

Nicholson method with two iterations [25]. We have used
a new implementation of absorbing boundary conditions.
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Essentially, only the Laplacian of the fields on the lattice
boundaries is replaced using radially outgoing boundary
conditions. For example,

∇2ϕa → −r̂ ·∇ð∂tϕ
aÞ ð7Þ

at a boundary point with r̂ being the unit radial vector from
the center of the box. The first order spatial derivatives
throughout the equations of motion are evaluated on the
boundaries using one-sided differences. We have found
good stability with this strategy.
The nonalgorithmic part of this project is to devise initial

conditions that are likely to result in monopole creation. As
noted in Ref. [15], a crucial hint comes from the con-
servation of helicity in MHD in plasmas with high electrical
conductivity. (Magnetic helicity is defined as the volume
integral of A · B where A is the electromagnetic gauge
potential and B ¼ ∇ × A.) Combined with the observed
conservation of electromagnetic helicity during sphaleron
decay [18,19] and the repulsive force between monopoles
and antimonopoles that are twisted and that yield magnetic
helicity on annihilation [20], it seems like a good idea to try
initial conditions that are built from helical, i.e., circularly
polarized, gauge waves. Also, MHD simulations indicate
that helicity causes magnetic fields to expand out to larger
length scales (“inverse cascade”), so that by colliding
helical waves, helicity gets compressed, causing tension
against the natural tendency to expand. This tension can
relax if helicity conservation is violated, either with a
decrease in the plasma electrical conductivity or by
producing magnetic monopoles.
We choose only one of the three SO(3) gauge fields to be

nontrivial in the initial conditions. Let this be W3
i . Initially,

at t ¼ 0, W3
i is given separately for waves propagating in

the þz and −z direction in terms of scalar functions
f1ðx; yÞ, f2;3(t� ðz ∓ z0Þ) with z0 > 0. For the waves
that are functions of tþ ðz − z0Þ, we have

W3
x ¼ ∂yf1ðωf2 − ∂zf2Þ cosðω(tþ ðz − z0Þ)Þ; ð8Þ

W3
y ¼ ∂xf1ðωf2 þ ∂zf2Þ sinðω(tþ ðz − z0Þ)Þ; ð9Þ

W3
z ¼ ∂x∂yf1f2½cosðω(tþ ðz − z0Þ)Þ

− sinðω(tþ ðz − z0Þ)Þ�: ð10Þ

Initial time derivatives, needed for evolution, can be found
by differentiating these expressions with respect to time.
Since ∇ ·W3 ¼ 0, and the electric field E3 ¼ −∂tW3, the
Gauss constraint is satisfied with vanishing charge density.
We arrange for an initially vanishing charge density by
setting

∂tϕ
ajt¼0 ¼ 0: ð11Þ

For a packet traveling in the opposite direction, we write
the formulas in terms of f3(t − ðzþ z0Þ),

W3
x ¼ ∂yf1ð−ω0f3 − ∂zf3Þ cosðω0(t − ðzþ z0Þ)Þ; ð12Þ

W3
y ¼ −∂xf1ðω0f3 − ∂zf3Þ sinðω0(t − ðzþ z0Þ)Þ; ð13Þ

W3
z ¼ ∂x∂yf1f3½cosðω0(t − ðzþ z0Þ)Þ

− sinðω0(t − ðzþ z0Þ)Þ�: ð14Þ

The profile functions are chosen to create localized
packets in all directions,

f1ðx; yÞ ¼ a exp

�
−
ðx2 þ y2Þ

2w2

�
; ð15Þ

f2;3ðt� ðz ∓ z0ÞÞ ¼ exp

�
−
ðt� ðz ∓ z0ÞÞ2

2w2

�
; ð16Þ

where a is an amplitude and w is a width. The frequencies
ω and ω0 can be different in general but we only consider
ω0 ¼ �ω. The case ω0 ¼ ω corresponds to scattering of
left- and right-handed circular polarizations, while ω0 ¼
−ω < 0 corresponds to scattering of left- on left-handed
circular polarization waves.
Now we linearly superpose the counterpropagating wave

packets and set t ¼ 0 to get the initial conditions for the
gauge fields for our scattering experiments.
Next we discuss the choice of the scalar field ϕa. The

simplest choice is ϕ1 ¼ 0 ¼ ϕ2, ϕ3 ¼ η but this is too
simple. In this case, W3 corresponds to the massless
“photon” of the model, and in this classical evolution,
the scattering of photons does not excite any other field. In
other words, the dynamics lies in a subspace of the full field
theory [26] and the classical dynamics is exactly as it would
be in Maxwell theory. The next choice we considered is
ϕ1 ¼ η, ϕ2 ¼ 0 ¼ ϕ3. Now W3 is a massive boson of the
theory. This too leads to dynamics in a subspace, namely,
that spanned by fϕ1;ϕ2;W3g. So now the model is
effectively the Abelian-Higgs Uð1Þ model. It is interesting
that when we performed some runs with these initial
conditions, we did observe 0’s of ϕa, suggesting that we
had created loops of strings. We postpone this investigation
for the future since here we are focusing on the production
of magnetic monopoles.
For the classical dynamics to explore the full model, we

take

ϕ1 ¼ ηffiffiffi
2

p ; ϕ2 ¼ 0; ϕ3 ¼ ηffiffiffi
2

p ð17Þ

at t ¼ 0. Now the initial gauge field wave packet is a
superposition of the photon and the massive gauge boson.
After the system has evolved for a while, we would like

to know if monopoles have been created. Since monopoles
are stable objects and the scalar field vanishes at their
centers, the existence of a monopole can be detected by
looking for peaks of the potential energy density that are
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close to the value λη4=4 ¼ 0.25. We follow the potential
energy diagnostic with a calculation of the topological
winding, which is defined as

WðSÞ ¼ 1

8π

I
S
dn̂iϵijkϵabcϕ̂

a∂jϕ̂
b∂kϕ̂

c

→
1

8π

X
plaq:

1

4

X
vertices

n̂iϵijkϵabcϕ̂
a∂jϕ̂

b∂kϕ̂
c; ð18Þ

where n̂ is the outward unit normal to a closed surface S

and ϕ̂a ¼ ϕa=j~ϕj. Even though WðSÞ takes integer values
in the continuum, the discrete version may not be an integer
on small surfaces.
Our simulations are run on a 1283 lattice with lattice

spacing dx ¼ 0.1 with field theory parameters: g ¼ 0.5,
λ ¼ 1, η ¼ 1. The initial condition parameters were chosen
to be w ¼ 0.4, z0 ¼ 1, a ¼ 10, ω ¼ 4, ω0 ¼ −4. With this
choice of parameters, the initial energy is ∼105 and is much
larger than the energy per monopole-antimonopole pair,
which is ∼102. Further exploration of parameters and
choice of initial conditions is likely to yield monopoles
even when we start with less energy, though intuitively the
initial conditions will have to be more finely tuned or
“coherent” if we take lower initial energy.
The first indication that monopoles have been produced

during evolution is that we see zeros of the Higgs field, as
seen in Fig. 1. The presence of monopoles is confirmed by
finding the topological winding, W, for every cell of the
lattice. In Fig. 2 we show the distribution of topological
charge on xy slices, i.e., on z ¼ const slices of the lattice,
that have significant winding. It is clear that the scattering
has resulted in four monopoles and four antimonopoles.
This is further confirmed by plotting the potential energy
density on these slices, shown in Fig. 3. The peaks in the
potential energy represent monopoles within which the
scalar field has a 0. On the lattice, the 0 may lie within a cell
and the potential will not quite be its maximal value of 0.25.

The distances between monopoles and antimonopoles is
on the order of three monopole widths where we take the
monopole width to be the inverse scalar boson mass,
m−1

S ¼ ð ffiffiffiffiffi
2λ

p
ηÞ−1 ¼ 0.7. We can estimate the velocities

of the monopoles from Fig. 1 and our choice of time step
dt ¼ dx=4 where dx is the lattice spacing. We find that the
monopoles are relativistic with v ∼ 1. A simple estimate of
the monopole-antimonopole escape velocity gives vesc ∼
0.1 when the separation of the pair is a few monopole
widths. Since the monopole and antimonopole velocities
are not aligned, the monopoles and antimonopoles are not
bound and continue to fly apart with time, as we observe
directly during the later stages of the simulation.
A curious feature of the final configuration of monopoles

is that they are all located at z > 0. However, this is not
in contradiction with any symmetry, since our initial

FIG. 1. Minimum value of j~ϕj on the lattice as a function of
time showing that 0’s of the scalar field are produced after some
evolution.

FIG. 2. Topological winding at late times on slices with
z ¼ 2.9, 3.7, and 5.7 for simulations on a 1283 lattice with dx ¼
0.1 and z ¼ 0 at the center of the lattice. The total topological
charges on these slices are þ2, −4, and þ2, respectively.
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conditions for ω0 ¼ −ω are not reflection symmetric
under z → −z.
We have run with initial conditions for a few different

parameter values and find monopole creation for larger
values of the amplitude a and frequency ω. Of particular
interest is the dependence on the sign of ω0 that determines
whether we are scattering left- on right-handed waves or
left- on left-handed waves. The results discussed above are
for ω ¼ 4, ω0 ¼ −4 (left- on left-handed waves); so we also
ran the code with ω0 ¼ þ4 and all other parameters kept the
same. In Fig. 4 we show the topological winding distri-
bution on the z ¼ 0 slice. The sharp negative peaks
signifying possible antimonopoles have positive peaks in
their neighborhoods and the integrated charge vanishes.
There are other peaks at nonzero z but these too have
canceling charge distributions in their vicinity. The total
topological charge per z slice is plotted in the second panel
of Fig. 4 to further illustrate this feature. Hence, simply
flipping the handedness of one of the initial waves results in
evolution in which there is no clear separation of monopole
and antimonopole charge. This example supports the

original intuition that helicity helps separate positive and
negative magnetic charge.
How can we realize initial conditions that correspond to

our incoming gauge waves? A possibility is to set up
photon collisions using high-intensity, circularly polarized
lasers. As discussed above, at the classical level these do
not yield solitons since the dynamics is in an Abelian
(Maxwell) subspace of the model. But quantum field theory
effects generate dynamics in the full model and create
charged, massive gauge bosons. In the standard model of
particle physics, which is based on SUð2Þ × Uð1Þ sym-
metry [not SO(3)], such photon collisions may produce
electroweak monopoles and strings [9]. An alternative is to
shoot circularly polarized lasers into a plasma target. To
analyze this setup we necessarily have to account for the
added complexity of plasma dynamics.
The probability of creating monopoles in any setup

depends on the sensitivity of the outcome of the scattering
to small errors in the initial conditions. Is the creation of
monopoles a “chaotic” process? In the case of kinks in
1þ 1 dimensions, it is known that their scattering and
annihilation is chaotic [27,28]. This ties in with the chaotic
behavior seen in the creation of kinks [11,12] and it appears
that the creation of kinks is very sensitive to the initial
conditions. However, chaos seems to be absent in the
annihilation of the magnetic monopole and antimonopole,
at least within the domain of scattering parameters that have
been investigated [20]. This suggests that the creation of
monopoles will also not be chaotic but this is something
that needs to be investigated.

FIG. 3. Potential energy density distribution at the final time of
the simulation on spatial slices with z ¼ 2.9, 3.7, and 5.7 as in

Fig. 2. With j~ϕj ¼ 0, the potential energy density is 0.25 for our
parameters.

FIG. 4. Topological winding on the z ¼ 0 slice for the ω ¼
þω0 ¼ 4 simulation. The plot does not show a clear separation
of positive and negative winding. In the second panel we
show the integrated winding per z slice as a function of z.
Here too we do not see a clear separation of positive and
negative charges.
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