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The piston system (particles in a box) is the simplest paradigmatic model in traditional thermodynamics.
However, the recently established framework of stochastic thermodynamics (ST) fails to apply to this
model system due to the embedded singularity in the potential. In this Letter, we study the STof a particle in
a box by adopting a novel coordinate transformation technique. Through comparing with the exact solution
of a breathing harmonic oscillator, we obtain analytical results of work distribution for an arbitrary protocol
in the linear response regime and verify various predictions of the fluctuation-dissipation relation. When
applying to the Brownian Szilard engine model, we obtain the optimal protocol λt ¼ λ02

t=τ for a given
sufficiently long total time τ. Our study not only establishes a paradigm for studying ST of a particle in a
box but also bridges the long-standing gap in the development of ST.
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Introduction.—When opening any textbook of thermo-
dynamics [1], the piston system [2], or the classical ideal
gas inside a rigid-wall potential, is the simplest archetypal
model used to illustrate various thermodynamic processes
and cycles. In the context of traditional thermodynamics,
due to the macroscopic size of the system, fluctuations
are usually vanishingly small. There, work and heat are
phenomenological variables and the microscopic equation
of motion (EOM) is not directly relevant.
When considering a small system, however, fluctuations

become important and the EOM becomes essential [3]. In
recent years, substantial developments in the field of
nonequilibrium thermodynamics in small systems [4,5]
have been made. One of them is the formulation of the so-
called stochastic thermodynamics (ST) [6–8], where sto-
chastic dynamics is incorporated into thermodynamics. For
small systems, e.g., a Brownian particle in a controllable
potential, a coherent framework of thermodynamics at the
trajectory level is constructed. Fluctuating thermodynamic
variables, such as work, heat, and entropy production, are
identified as functionals of individual trajectories [9–12],
based on which one can, in principle, calculate their
distributions in arbitrary driven processes [13,14] and thus
go beyond the traditional thermodynamics. In the linear
response regime, the work distribution is Gaussian and
satisfies the fluctuation-dissipation relations (FDRs)
[13,15]. What is more, even in arbitrarily far-from-
equilibrium processes, some exact fluctuation relations
concerning work, heat, and entropy production are dis-
covered [11,16–21]. Experimentally, these fluctuation rela-
tions have been verified in various systems, including a
Brownian particle in a soft-wall potential [22–25], exem-
plified by a charged colloidal particle trapped by optical
tweezers. The essential point of these developments in

thermodynamics is the microscopic definition of work,
heat, and entropy at the trajectory level.
However, the usual microscopic definition of work

W½xt� ¼
R
dt∂tVtðxtÞ [11,12] (see Refs. [6,21,26–32] for

discussions and debates) is not applicable to the piston
system, due to singularities in the rigid-wall potential,
where work is done during discrete collisions of the particle
with the moving piston [33,34]. Previously, there are
studies about work distributions of piston systems in
nonequilibrium processes, but either with no contact with
a heat bath [33–35] or with no relevance to Brownian
dynamics [36–39]. The solution to the piston system
becomes a “missing puzzle piece” in ST. Possibly for
lack of efficient ways of studying ST in a piston system,
finite-time thermodynamics of the famous Brownian
Szilard engine (BSE) [36,39–43] remains unexplored so
far. Hence, how to extend the framework of ST to the piston
system becomes one of the most challenging problems in
this field.
In this Letter, we try to extend the previous framework of

ST to include the rigid-wall potential. We introduce a novel
approach of coordinate transformation to study the ST in
an isothermal piston. In this way, under certain conditions,
the isothermal piston model is found to be highly similar to
an isothermal breathing harmonic oscillator (HO) [44,45],
one of the very few models whose work distribution in an
arbitrary process can be calculated analytically [45]. Since
exactly solvable models play an important role in statistical
mechanics, considering the special role and the ubiquity of
piston systems in thermodynamics, we believe that our
work not only significantly extends the applicability of ST
but also has pedagogical value. We also note that the rigid-
wall potential is accessible in current experiments [46,47],
so our findings could possibly be tested.
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Model setup.—Consider a single Brownian particle
confined in a one-dimensional piston with its left boundary
fixed while the right one movable. The mass of the particle
is denoted by m, and the left and right boundaries are at
the origin x ¼ 0 and x ¼ λt ð0 ≤ t ≤ τÞ, respectively. The
piston system is coupled to a heat bath with inverse
temperature β, so the motion of the Brownian particle
can be described by the following underdamped Kramers-
Langevin equation [6]

_x ¼ p
m
; _p ¼ −γ

p
m
þ

ffiffiffiffiffi
2γ

β

s
ηt þ Ic; ð1Þ

where ðx; pÞ≡ Γ is the particle’s position-momentum
coordinate in the phase space, γ is the viscous friction
coefficient that characterizes the coupling strength between
the piston system and the heat bath, ηt is the standard
Wiener process satisfying hηtηt0 i ¼ δðt − t0Þ and ηtdt ∼
Nð0; dtÞ (normal distribution with mean zero and variance
dt), and Ic is the collision term responsible for the
collisions with the two boundaries, which are necessary
to keep the particle inside the piston, namely, xt ∈ ½0; λt�.
Explicitly, Ic suddenly changes p into 2m_λt − p (or −p)
once a collision at the right (or left) boundary occurs at time
t. We emphasize that since the change of the momentum is
essential in collision processes, our starting point is the
underdamped [45,48,49] EOM (1) instead of the over-
damped Langevin equation, which is simpler and is more
frequently adapted in calculating work distributions in ST.
Provided that the collisions are elastic, the work func-

tional in terms of a trajectory Γt ≡ ðxt; ptÞ in the phase
space can be evaluated as [33]

W½Γt� ¼ −
X
t∈C½xt�

2_λtðpt− −m_λtÞ; ð2Þ

where C½xt�≡ ft∶xt ¼ λt; 0 ≤ t ≤ τg is the set of collision
time points for a trajectory xt in real space; pt− is the
momentum value at the time point immediately prior to t.
One can see that the above work expression differs
significantly from the usual one W½xt� ¼

R
dt∂tVtðxtÞ

[11,12] in both the momentum dependence and the discrete
summation rather than an integration.
To be specific, in the following we will focus on

calculating the work distribution for the expansion process
starting from a canonical ensemble, where the initial
distributions of x and p are, respectively, Uð0; λ0Þ (uniform
distribution) and Nð0; m=βÞ (normal distribution). During
the course, the right boundary is driven according to an
arbitrary protocol λt and ends at λτ ¼ 2λ0. Actually, this is
the model used in the famous BSE [36,39–43].
Coordinate transformation and the Feynman-Kac

equation.—While the numerical simulation based on
Eqs. (1) and (2) is straightforward, a direct analytical
treatment seems to be hopeless, due to the difficulties
caused by the time-dependent boundary condition and the

collision term Ic. To eliminate these difficulties, we
perform the following coordinate transformation [50]

ð−Þ⌊ξ⌋þ1hðξÞ≡ x
λt
; P ≡ ð−Þ⌊ξ⌋pþm_λthðξÞ; ð3Þ

where hðξÞ≡ 2⌊ðξþ 1Þ=2⌋ − ξ with ⌊…⌋ being the Gauss
floor function; the dimensionless quantity ξ can be any
value on the real axis. From Eq. (3), it seems that the new
coordinate ξ can hardly be uniquely determined by x, but a
one-to-one mapping between them can be indeed unam-
biguously established as long as we add the information of
collision to ξ. We stipulate that ξ crosses an integer every
time a collision occurs. In particular, ξ crosses an odd
(even) integer once the particle collides with the right (left)
boundary. Such a correspondence relation (3) is illustrated
schematically in Fig. 1. It is found that both _ξ and P are
continuous functions of time, in the sense that they never
jump. Thus, we expect to construct a collision-free EOM
with respect to the new variables ~Γ≡ ðξ;PÞ, since they are
continuous functions of time. After some calculations, we
obtain the following new EOM in terms of ξ and P

_ξ ¼ P
mλt

;

_P ¼ ðγ _λt þm ̈λtÞhðξÞ −
�
γ

m
þ

_λt
λt

�
P þ

ffiffiffiffiffi
2γ

β

s
ηt: ð4Þ

Correspondingly, the work functional in terms of the new
variables reads

W½ ~Γt� ¼ −
Z

τ

0

dt
P2

t
_λt

mλt
½h0ðξtÞ þ 1�; ð5Þ

where h0ðξÞ þ 1 is a compact form of 2
P

k∈Zδðξ − 2k − 1Þ,
and obviously this work functional (5) cannot be directly

FIG. 1. Typical trajectories of (a) position x and (c) momentum
p, as well as the new variables (b) ξ and (d) P after transformation
(3). The expansion protocol is the linear one, i.e., λt ¼
λ0ð1þ t=τÞ, where λ0 ¼ 1 and τ ¼ 20, presented as the dashed
black line in (a). All the blue curves correspond to the adiabatic
process (γ ¼ 0), while the red ones correspond to the isothermal
process with γ ¼ 0.05 and β ¼ 1.
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obtained from the usual microscopic definition of work
W½xt� ¼

R
dt∂tVtðxtÞ [11,12].

To check the correctness of such a coordinate trans-
formation, we carry out numerical simulations based on the
new EOM (4) and the work functional (5). The results are
presented in Fig. 2, which strongly suggest the validity of
the Jarzynski equality and the asymptotic Gaussian type of
work distribution for large τ, which has been analytically
demonstrated for generic overdamped Langevin systems
with smooth potentials [13]. Further examinations confirm
the validity of the coordinate transformation [50].
With these relations, we can write down the Feynman-Kac

equation (FKE) [44,45,54], which determines the time evo-
lution of the phase point distributionweighted by a parametric
exponential work factor. The FKE is obtained as [50]

∂tρs ¼ L½λt�ρs þ s
P2 _λt
mλt

½h0ðξÞ þ 1�ρs; ð6Þ

where ρs ¼ ρsðξ;P; tÞ is related to the joint distribution
function ρðξ;P;W; tÞ by a Laplace transform ρs ≡Rþ∞
−∞ dWρðξ;P;W; tÞe−sW and the linear operator L½λt� is
defined as

L½λt�≡ −
P
mλt

∂ξ þ
�
ðγ _λt þm ̈λtÞhðξÞ∂P

þ ∂P

�
γ

m
þ

_λt
λt

�
P
�
þ γ

β
∂2
P : ð7Þ

Once we solve Eq. (6), we can immediately obtain the
generating function ψ sðtÞ of the work distribution by
integrating out ξ and P, namely, ψ sðtÞ≡ he−sWi ¼R
dξdPρsðξ;P; tÞ. The generating function ψ sðtÞ provides

an alternative way to get access to the properties of the
work distribution function [44], so the central problem is to
solve the FKE (6).
Frequent-collision approximation and the reduced

Feynman-Kac equation.—Unfortunately, a general exact
solution of the FKE (6) is difficult to obtain, due to the
complexities arising from both the number of variables
and the nonanalyticity of the expressions [hðξÞ]. In fact,
besides the driven overdamped Brownian HO [55,56], the
V potential [57], and the logarithmic-harmonic potential
[57,58], the only analytically solvable model in ST so far
seems to be the breathing overdamped Brownian HO
[44,45]. Even for such a model, an exact solution is usually
unavailable unless the initial distribution is Gaussian.
Accordingly, we need to make further approximations to

obtain analytic results in certain interesting regimes.
Remember that one of the difficulties comes from the
discreteness of collisions, and the work accumulates more
and more continuously as the collision frequency increases.
This is the case in the high temperature limit for a given
protocol, or equivalently, in the slow limit of the protocol at
any finite temperature. A paradigmatic example to illustrate
this subtlety is the work distribution for the quasistatic
adiabatic expansion processes of an ideal gas [59], which
can be exactly reproduced by the universal work distribu-
tion function in Ref. [33] via smoothing out the local
oscillations caused by the discreteness of collisions.
Inspired by this, we can similarly try to flatten the rapidly
oscillating parts hðξÞ in the FKE (6). In fact, it is feasible to
construct a reduced partial differential equation only in
terms of P via integrating out the positionlike variable ξ
under this approximation, which is completely in contrast
to the conventional overdamped Langevin dynamics where
the position instead of the momentum is kept. The reduced
Feynman-Kac equation (RFKE) in this case is

∂tϱs ¼ ∂P

��
γ

m
þ

_λt
λt

�
P þ γ

β
∂P

�
ϱs þ s

P2 _λt
mλt

ϱs; ð8Þ

where ϱs ¼ ϱsðP; tÞ≡
R
dξρsðξ;P; tÞ is the P marginal

distribution function weighted by a parametric exponential
work factor. The validity of the RFKE can be checked
self-consistently [50]. We emphasize that the RFKE (8) is
merely an approximated equation valid for sufficiently slow
expanding.
Asymptotic behavior and protocol optimization in the

linear response regime.—Thanks to the similarity between
the RFKE (8) (as well as its associated work functional) and
the overdamped FKE for a breathing HO [44,45], we can
further simplify Eq. (8) into a set of ordinary differential
equations by utilizing the technique developed in dealing

FIG. 2. Work distribution functions for the uniform expansion
protocol with τ ¼ 20, 50, 100, 200, 400, 1000 obtained from
stochastic simulations, where the PðWÞ curve with sharper peak
corresponds to larger τ (similar results were obtained for a
breathing HO in Ref. [53]). The work distribution for τ ¼ 20 is
clearly non-Gaussian, and thus beyond the linear response
regime. The vertical red dashed line marks the position of
ΔF ¼ β−1 ln 2. The inset shows the numerical estimation of
the free-energy difference ΔFest based, respectively, on the mean
work hWi (blue line), the linear response correction hWi − βσ2=2
(orange line), and the Jarzynski equality −β−1 lnhe−βWi [15] for
nine different uniform expansion processes, with τ ¼ 2, 5, 10, 20,
50, 100, 200, 400, 1000. The horizontal red dashed line is the
theoretical free-energy difference, while the dots are the simu-
lation results. Here, λ0 ¼ 1, β ¼ 1, and γ ¼ 1 are all fixed.
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with the breathing HO model [44,45]. The key point of the
technique is the Gaussian ansatz that the solution takes
the form ϱsðP; tÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½ψ sðtÞ�3g=½2πϕsðtÞ�

p
e−½P2ψ sðtÞ�=½2ϕsðtÞ�

[60]. In this manner, the RFKE (8) is equivalent to

_ψ s ¼
s_λt
mλt

ϕs;

_ϕs ¼ − 2

�
γ

m
þ

_λt
λt

�
ϕs þ

2γ

β
ψ s þ

3s_λt
mλt

ϕ2
s

ψ s
; ð9Þ

with the initial conditions ψ sð0Þ ¼ 1 and ϕsð0Þ ¼ m=β.
To proceed analytically, we further confine ourselves

in the linear response regime, where α≡m_λt=γλt ≪ 1
and Eq. (9) can be solved perturbatively. To perform
perturbative analysis, we introduce another function gsðtÞ≡
ðβ=sÞðd lnψ s=d ln λtÞ; thus, ψ s can be evaluated in terms of
gs through ψ sðτÞ ¼ exp½ðs=βÞ R τ

0 dtð_λt=λtÞgsðtÞ�. Now, the
problem is to solve for gsðtÞ. The nonlinear ordinary differ-
ential equation that governs the time evolution of gsðtÞ is
found to be a Riccati equation

_gs ¼
2_λt
λt

gs

�
s
β
gs − 1

�
−
2γ

m
ðgs − 1Þ; gsð0Þ ¼ 1: ð10Þ

In the sense of perturbation, gs should be expanded as

1þ gð1Þs þ gð2Þs þ…, where the magnitude of gðkÞs is OðαkÞ.
In the linear response regime, we have gs ≈ 1þ gð1Þs ,
according to which we expect the system to obey the

FDR. In fact, we obtain gð1Þs ¼ ðm_λt=γλtÞ½ðs=βÞ − 1�; thus,
the generating function should be

ψ sðτÞ ¼ exp

�
s
β
ln
λτ
λ0

þ s
β

�
s
β
− 1

�
γ

m

Z
τ

0

dtα2 þOðα2Þ
�
:

ð11Þ
This expression indicates that the corresponding work dis-
tribution isGaussianwith themean hWi ¼ −β−1 lnðλτ=λ0Þ þ
ðγ=βmÞ R τ

0 dtα
2 and the variance σ2W ¼ ð2γ=β2mÞ R τ

0 dtα
2.

Since the free-energy difference is ΔF ¼ −β−1 lnðλτ=λ0Þ,
we verify the first prediction of the FDR [15]:
hWi − ΔF ¼ 1

2
βσ2W . If we define the protocols λt ¼

Λðt=τÞ with different τ as one class, then for a given class
ΛðuÞ ð0 ≤ u ≤ 1Þ, the deviation of the mean work from the
free-energy differencewill be inversely proportional to τ [61]

hWi − ΔF ¼ Kτ−1; ð12Þ
where the coefficient K ¼ ðm=βγÞ R 1

0 du½χ0ðuÞ�2, χðuÞ≡
ln½ΛðuÞ=Λð0Þ�. For a linear (sine) protocol χðuÞ ¼ lnð1þ uÞ
[χðuÞ ¼ ln ½2 sinðπ=3Þðuþ 1

2
Þ�], we have K ¼ ðm=2βγÞ

[K ¼ ½ð3 ffiffiffi
3

p
− πÞπm=9βγ�]. This is another prediction of

FDR in the linear response regime and is numerically verified
(see Fig. 3). So far, we have analytically demonstrated that all
these asymptotic behaviors of the work distribution of the
expanding isothermal piston system share the same features

with those of conventional overdamped Langevin systems
[13,15,53] and obey FDRs. However, we again emphasize
that the approaches used to deal with the systemswith smooth
potentials are essentially inapplicable to the piston system.
So, a distinct method for the piston system is developed here.
Since we have obtained the mean work expression (12)

analytically, we can also investigate the optimization
problem in the linear response regime. Particularly, we
are interested in the maximum mean work extraction from
the heat bath for a given time interval ½0; τ� [62–64] because
the optimal work protocol of the BSE is a very important
but unsolved problem. For the expansion process in a BSE
cycle, the boundary condition can be rewritten as χð0Þ ¼ 0
and χð1Þ ¼ ln 2. To maximize the mean work extraction,
we only have to minimize the coefficient K as a functional
of χðuÞ. The variation of K in terms of χðuÞ gives a simple
equation χ00ðuÞ ¼ 0, implying that χðuÞ ¼ u ln 2 or λt ¼
λ02

t=τ is the optimal protocol that makes K reach its
minimum ðm=βγÞln22. Starting from Eq. (8), the same
result can be obtained from the thermodynamic length L
via K ¼ L2 [65], where L ¼ R λτ

λ0
dλ

ffiffiffi
ζ

p
with ζ ¼ ðm=βγλ2Þ

being the thermodynamic metric for the piston system.
It is worth mentioning that we may also analyze the

optimization problem based on Eq. (8) without doing
perturbative expansions. The optimal protocol turns out
to be similar to that of the breathing HO [62], and in the
linear response regime, the exponential optimal protocol
λt ¼ λ02

t=τ can be reproduced.
Conclusion.—Previously, nonequilibrium thermody-

namics in the isothermal piston system can only be studied
numerically and few insights can be gained from the
numerical results [66]. In this Letter, by performing a
coordinate transformation, we find that the EOM in the new
coordinate corresponds to a collision-free stochastic

FIG. 3. hWi − ΔF versus τ−1 for the uniform and the sine
expansion protocols in the linear response regime, obtained by
numerical stochastic simulations based on the original EOM (1)
as well as the original work expression (2) (blue and yellow dots)
and the theoretical prediction (12) (red dashed and dotted lines).
The parameters are γ ¼ 1 and β−1 ¼ 100, and the error bar
denotes twice the standard deviation of the mean. One can see
good agreement for sufficiently small τ−1.
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diffusive system in the full space. We have derived the exact
FKE and simplified it into a single-variable RFKE under
the frequent-collision approximation. By solving the RFKE
perturbatively, we not only demonstrate the Gaussian
asymptotic behavior of the work distribution and the
validity of the FDRs in the piston system but also obtain
the optimal work extraction protocol λt ¼ λ02

t=τ of the BSE
in the linear response regime. Our study is complementary
to previous studies of ST in systems with smooth potentials.
By extending the studies of ST to the conceptually simplest
and paradigmatic model in traditional thermodynamics, the
isothermal piston system, we bridge the long-standing gap
in the development of ST.
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