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Local diffusion coefficients in disordered materials such as living cells are highly heterogeneous.
We consider finite systems with quenched disorder in order to investigate the effects of sample disorder
fluctuations and confinement on single-particle diffusivity. While the system is ergodic in a single disorder
realization, the time-averaged mean square displacement depends crucially on the disorder; i.e., the system
is ergodic but non-self-averaging. Moreover, we show that the disorder average of the time-averaged mean
square displacement decreases with the system size. We find a universal distribution for diffusivity in the
sense that the shape of the distribution does not depend on the dimension. Quantifying the degree of
the non-self-averaging effect, we show that fluctuations of single-particle diffusivity far exceed the
corresponding annealed theory and also find confinement effects. The relevance for experimental situations
is also discussed.

DOI: 10.1103/PhysRevLett.117.180602

Introduction—Anomalous diffusion, where the mean
square displacement (MSD) does not depend linearly on
time, unlike Brownian motion, has been extensively
observed in complex systems such as disordered materials
[1,2] and living cells [3–5]. One of the origins of anoma-
lous diffusion is ascribed to a quenched random environ-
ment with highly heterogeneous local diffusivity. Such
heterogeneous environments play a crucial role in the
fluctuations of diffusivity observed in the one-dimensional
diffusion of proteins on DNA [6,7] and diffusion in living
cells [5]. In single-particle-tracking experiments, the
trajectory rðtÞ of a tracer in a medium is recorded. One
of the most common tools to quantify the diffusivity in
experiments is the time-averaged MSD:

δ2ðΔ; tmÞ≡ 1

tm − Δ

Z
tm−Δ

0

dt0δrΔðt0Þ2; ð1Þ

where tm is the measurement time and δrΔðt0Þ≡
rðt0 þ ΔÞ − rðt0Þ. For Brownian motion in a homogeneous
medium, the time-averaged MSD converges to the ensem-

ble-averaged MSD δ2 ∼ 2dDΔ, where D is the diffusion
coefficient and d is the space dimension. In strongly
disordered systems, this equivalence can be broken, which
is usually observed together with the onset of anomalous
diffusion [8–11].
In the laboratory, diffusivity may represent either a “local”

or “global” measurement. Consider, for example, normal
Brownian motion in a homogeneous bounded system with
size L. Short-time measurements (tm ≪ L2=D) of the
Brownian particles are local in the sense that the particles
did not explore the phase space of the system. The opposite
situation (tm ≫ L2=D) implies a global measurement.

In homogeneous systems, both the local and global mea-

surements are identical, because δ2 ∼ 2dDΔ for Δ ≪ L2=D
and Δ ≪ tm. However, a profoundly different scenario
emerges for diffusion in strongly disordered systems, where
the equivalence between local and global diffusivity breaks
down in a nontrivial statistical way. In strongly disordered
systems, the larger the system becomes, the more likely
particles find extremely slow diffusive regions. Thus, as we
will demonstrate, the global diffusivity may depend on the
system size but not so for the local diffusivity. Both global
and local measurements are practically important andwidely
measured. In particular, global measurements reveal anoma-
lous diffusion for single mRNA in an E. coli cell [3], where
the exploration of the cell is possible on the experimental
time scale. On the other hand, local measurements are
conducted for telomeres in the nucleus of the cell [12],
where particles never encounter the system’s boundary.
Anomalous diffusion in quenched environments is some-

times discussed by replacing the quenched disorder by an
annealed one; i.e., the continuous-time random walk
(CTRW) approximation is employed for both open [1,2]
and closed systems [13,14]. However, whenwe look at finite
disordered systems such as proteins on DNA or in living
cells, it is not clear whether the annealed picture can
accurately describe the underlying diffusion processes
[5–7]. Therefore, it is desired to clarify properties of
single-particle diffusion that are inherent in a quenched
environment. Here, we consider the quenched trap model
(QTM) [2] and derive several universal properties of dif-
fusivity in the QTM. We show that fluctuations for global
measurements of diffusivity in the QTM, among different
realizations of the disorder, far exceed the corresponding
fluctuations found for the CTRW. Thus, against common
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belief, the annealed model does not capture the main
ingredients of anomalous diffusion in the quenched envi-
ronment. We show that the statistics of fluctuations of
diffusivity is universal, because it is valid for any dimension.
Confinement effects are also demonstrated. These will
provide a basis to consider anomalous diffusion of single
particles in finite systems with quenched disorder.
Model.—We consider a random walk on a quenched

random energy landscape on a finite d-dimensional hyper-
cubic lattice [2]. Quenched disorder means that when
realizing the random energy landscape it does not change
with time. The lattice constant is set to unity, and the
number of lattice sites with different energies is Ld. At each
lattice point, the depth E > 0 of an energy trap is randomly
assigned. The depths are independent identically distrib-
uted random variables with an exponential distribution:
ρðEÞ ¼ T−1

g expð−E=TgÞ. A particle can escape from a trap
and jump to one of the nearest neighbors. The escape time
τr from a trap at site r follows the Arrhenius law, i.e.,
τr ¼ τ0 expðEr=TÞ, where Er is the depth of the energy at
site r, T the temperature, and τ0 a typical time. Using ρðEÞ
and the Arrhenius law, one can show that the probability
density function (PDF) ψαðτÞ of trapping times followsZ

∞

τ
dτ0ψαðτ0Þ ¼

�
τ

τ0

�
−α
ðτ ≥ τ0Þ ð2Þ

with α≡ T=Tg [15]. Thus, the mean trapping time diverges
for α ≤ 1, which leads to anomalous behaviors [2,16–22].
Note that the sample mean trapping time μ ¼ P

rτr=L
d for

a fixed disorder never diverges when L < ∞. Thus, one
can define the sampling time as the time scale on which
coverage of the system’s phase space is reached, e.g.,
tsam ∝ L2 for d ¼ 1 and tsam ∝ Ld for d > 1 in a simple
random walk [23,24], where we ignored a logarithmic
contribution. The statistics of the time-averaged MSD is
now classified into two regimes for the measurement time
tm: local measurements (tm ≪ tsam) and global measure-
ments (tsam ≪ tm). For global measurements of the time-
averaged MSD, we consider small and large Δ regimes
because of the confinement effect.
Let Pr be the probability of finding a particle at site r.

Except for the boundary, the master equation for the ith

disorder realization τðiÞr is given by

dPr

dt
¼ 1

2d

X
r0

Pr0

τðiÞr0
−

Pr

τðiÞr
; ð3Þ

where the sum is over the nearest-neighbor sites. We
consider global measurements for two boundary condi-
tions: periodic and reflecting. In both cases, when we take
long measurements ðtm ≫ 1Þ, the finite system reaches an
equilibrium state:

Peq
r ¼ τðiÞr

Ldμi
; ð4Þ

where μi ¼
P

rτ
ðiÞ
r =Ld is the sample mean trapping time.

Universal distribution of diffusion coefficient for global
measurement in a small Δ regime.—When Δ is small, the
time-averaged MSD is not sensitive to the type of boundary
condition. Here, we use the periodic boundary condition.
Since processes in finite size systems are ergodic [see

Eq. (11)], δ2ðΔ; tmÞ can be replaced by the ensemble-
averaged MSD with the equilibrium initial condition for
global measurements. The MSD for the ith disorder
realization increases as hδrΔð0Þ2ieq ¼ hNΔieq, where
hNΔieq is the mean number of jumps until time Δ and
h·ieq implies the equilibrium initial ensemble. Thus, we
have

δ2ðΔ; tmÞtm → ∞�����!hδrΔð0Þ2ieq ¼ hNΔieq ¼
Δ
μi

ð5Þ

for a single disorder realization, because the rate that a
particle jumps does not change in time with the aid of
equilibration (see Supplemental Material for the derivation
[25]). This result is exact for any Δ > 0. We note that this
average is taken over equilibrium initial conditions and
thermal histories but not over disorder.
Now, we consider the effect of disorder on the

diffusivity. Since the diffusion is normal, we define the
diffusion coefficient for a single disorder realization i as
Di≡hδrΔð0Þ2ieq=ð2dΔÞ, and hence Di¼1=ð2dμiÞ. When
the mean trapping time hτi≡R

∞
0 τψðτÞdτ is finite (α>1),

we have μi → hτi (L → ∞) by the law of large numbers.
In this limit, the diffusion coefficient does not depend
on the disorder realization. Hence, the diffusion coef-
ficient is self-averaging (SA) [2].
When the mean trapping time diverges (α ≤ 1), the

law of large numbers breaks down. Instead, the PDF of

the normalized sum of τðiÞr follows the one-sided Lévy
distribution [26]:

P
rτ

ðiÞ
r

ðLdÞ1=α ⇒ Xα ðL → ∞Þ; ð6Þ

where Xα is a random variable following the one-sided
Lévy distribution of index α. The PDF of Xα denoted by
lαðxÞ with x > 0 is given by [26]

lαðxÞ ¼ −
1

πx

X∞
k¼1

Γðkαþ 1Þ
k!

ð−cx−αÞk sinðkπαÞ; ð7Þ

where c ¼ Γð1 − αÞτα0 is a scale parameter. Here, we define
the inverse Lévy distribution as the PDF of X−1

α :

gαðyÞ ¼ −
1

πy

X∞
k¼1

Γðkαþ 1Þ
k!

ð−cyαÞk sinðkπαÞ: ð8Þ
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Because the diffusion coefficient is given by Di ¼
ðLdÞ1−1=αX−1

α =ð2dÞ, the PDF of Di is described by the
inverse Lévy distribution, and hence Di depends crucially
on the sample of the disorder realization. As discussed later,
these fluctuations are much larger if compared with the
annealed model. As shown in Fig. 1, our rigorous result
for the asymptotic distribution of the diffusion coefficients
is in good agreement with the numerical simulations.
Surprisingly, the inverse Lévy distribution is a universal
distribution of the diffusion coefficient in the sense that it is
exact for any dimension. Using the first moment of the
inverse Lévy distribution [25], we obtain the exact asymp-
totic behavior of the disorder average of the diffusion
coefficient:

hDidis ∼
Ldð1−1=αÞΓðα−1Þ
2dατ0Γð1 − αÞ1=α ; ð9Þ

where h·idis means the disorder average, i.e., the average
taken from many trajectories obtained under different
disorder realizations. We confirm that this asymptotic result
is valid for large L as presented in Fig. 1. To develop some
physical interpretations for Eq. (9), we note that, when the
system size is increased, one finds deeper and deeper traps,
these in turn tend to localize the particle for long times,
and hence diffusivity is decreased as the system size is
increased. This effect vanishes as α → 1. Since the system
is ergodic as will be shown below, the time-averaged MSD

becomes hδ2ðΔ; tmÞidis → 2dhDidisΔ as tm → ∞ (see
Fig. S3 in Supplemental Material [25]).
Ergodicity.—To investigate the ergodic properties of the

disordered system, we consider the ergodicity breaking
(EB) parameter [27] defined by

EBðtm;ΔÞ≡
hδ2ðΔ; tmÞ2ipath − hδ2ðΔ; tmÞi2path

hδ2ðΔ; tmÞi2path
; ð10Þ

where h·ipath implies an ensemble average using many
different trajectories. Here we note that we consider a single
disorder realization and that the definition Eq. (10) holds
also for the CTRW [27]. If the EB parameter goes to zero,
the time-averaged MSD for a single disorder realization
converges to a constant; that is, the process is ergodic:

δ2ðΔ; tmÞ → hδrΔð0Þ2ieq for tm → ∞. In the CTRW, the EB
parameter is not zero even when tm goes to infinity [14,27].
For global measurements, the EB parameter for a single
disorder realization decays as

EBðtm;ΔÞ ∼
4Δ
3dtm

ðtm → ∞ and Δ ≫ 1Þ; ð11Þ

which means that the system is ergodic (see Supplemental
Material [25] for the derivation). This statement becomes
invalid for an infinite system (L ¼ ∞), because there is no
equilibrium state [19].
Self-averaging.—Next, we propose another quantity

characterizing the SA property. The SA parameter for
the time-averaged MSD is defined as

SAðtm; L; δr2ΔÞ≡ hδ2ðΔ; tmÞ2idis − hδ2ðΔ; tmÞi2dis
hδ2ðΔ; tmÞi2dis

: ð12Þ

Because the system is ergodic for finite L, the SA
parameter becomes

SAðtm; L; δr2ΔÞ tm → ∞�����! h1=μ2i idis − h1=μii2dis
h1=μii2dis

: ð13Þ

The difference between EB and SA parameters is in their
averaging procedures. For the former we use a single
disordered system and average over paths h·ipath, while for
the latter we average over many realizations of disorder
h·idis. Using the first and the second moment of 1=μi
obtained in Supplemental Material [25], we have the SA
parameter

lim
L→∞

lim
tm→∞

SAðt; L; δr2ΔÞ ¼
(
0 ðα > 1Þ
αΓð2αÞ
Γð1αÞ2

− 1 ðα ≤ 1Þ: ð14Þ

The SA parameter becomes zero when the process is SA.
Hence, the process is not SA for α < 1, whereas it is
ergodic when L < ∞. The results obtained so far show
striking differences if compared with the CTRW. In the
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FIG. 1. Distribution of the diffusion coefficients for different
disorder realizations (T ¼ 1 and Tg ¼ 1.5). The crosses are the
results of the numerical simulation (d ¼ 1 and L ¼ 104). The
mean of the PDF is set to unity. The solid line is the inverse Lévy
distribution [Eq. (8)]. The inset shows the disorder average of
diffusion coefficients as a function of the system size L for several
α ¼ T=Tg. Here, the symbols are the results of numerical
simulations, and the solid lines are the theoretical curves
[Eq. (9)]. In both numerical simulations, we calculated the
diffusion coefficients (2dD ¼ 1=μi) for different disorder real-
izations by Monte Carlo simulations (see Supplemental Material
[25] for finite time simulations).
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CTRW one finds ergodicity breaking [14,27–29], while so
far we have found non-SA. While there is no quenched
disorder in the dynamics of the CTRW, the EB parameter in
the CTRW corresponds to the SA parameter in the QTM.
Thus, it becomes meaningful to compare between the
magnitude of these fluctuations, and we show that the
non-SA effect is much stronger than the EB effects (see
Fig. 2). The difference between the CTRWand QTM is the
fact that waiting time distributions at all lattice points are
identical in the CTRW, and thus the CTRW is homo-
geneous. Furthermore, the distribution of the diffusion
constant in the QTM is not bounded at D ¼ 0 (see
Fig. 1), which implies a heavy statistical weight for very
slow particles. Because this effect is not found for the
annealed model, quenched models lead to surprisingly
large fluctuations. Finally, in the CTRW, diffusivity
depends on the measurement time, i.e., a phenomenon
called aging [8,27,29,30]. On the other hand, the system
size controls the long-time statistics of the diffusion
coefficient in the QTM with confinement, e.g., Eq. (9).
Fluctuations in global measurement in a large Δ

regime.—For large Δ, effects of the boundary on the MSD
are inevitable. Thus, the MSD converges to a constant as
Δ → ∞ due to the confinement. Here, we consider fluctua-
tions of the time-averaged position due to disorder realiza-
tions. Because the system is ergodic, the SA parameter for
the position in the long-time limit ðt → ∞Þ is given by

SAðtm; L; rÞ≡ hr2idis − hri2dis
hri2dis

→
hhri2eqidis − hhrieqi2dis

hhrieqi2dis
;

ð15Þ

where r≡ R
t
0 rðt0Þdt0=t. Using methods similar to those

presented in Ref. [31], we show in Supplemental Material
[25] that the SA parameter for the position becomes

lim
L→∞

lim
tm→∞

SAðtm; L; rÞ ¼
�
0 ðα > 1Þ
1−α
3

ðα ≤ 1Þ: ð16Þ

Thus, thenon-SAbehavior of thepositionunder confinement
appears for α < 1. Unlike the SA parameter for the time-
averaged MSD, that for the position does not blow up
when α → 0.
As shown in Fig. 3(a), the SA parameter of the time-

averaged MSD depends on the lag time Δ and saturates due
to the confinement. Hence, the time-averaged MSD is also
non-SA under confinement for a large Δ regime. We note
that the EB parameter does not depend on Δ in the CTRW
with confinement [13,14].
Local measurements Δ ≪ tm ≪ tsam.—In local measure-

ments, trajectories of particles are not exploring the full
extent of the system, and one may regard the process as a
motion in an infinite system. For d ≥ 2, the CTRW model
is a valid description of the QTM. This implies that we may
observe a transition in the SA parameter as the measure-
ment time is increased. As shown in Fig. 3(b), for local
measurements tm ≪ tsam, we get the CTRW-like descrip-
tion, while increasing tm finally crossing to the limit
tm ≫ tsam we observe the behavior predicted here in
Eq. (14). The SA parameter increases with measurement
time in this example, which is a general trend in the QTM
but not in the annealed model.
Discussion.—We analytically showed ergodicity and

non-SA properties in a d-dimensional QTM with a finite
system size. The non-SA effects lead to universal fluctua-
tions of diffusivity; that is, the PDF of the diffusion
coefficient follows the inverse Lévy distribution in arbitrary
dimension. The inverse Lévy distribution stems from the
Lévy distribution, which is a universal distribution for the

FIG. 2. Self-averaging parameter as a function of α. The
squares and the triangles are obtained by Monte Carlo simu-
lations of Eq. (13) (d ¼ 1 and L ¼ 103) and the numerical
simulation of dynamics of the QTM (d ¼ 3, L ¼ 10, and
tm ¼ 107 for α ¼ 0.8 and 108 for other cases), respectively.
The solid and the dotted lines are the SA parameter in the QTM
[Eq. (14)] and the EB parameter in the CTRW, which is given by
2Γð1þ αÞ2=Γð2αþ 1Þ − 1 [27], respectively.

(a) (b)

FIG. 3. Effects of confinement in sample-to-sample fluctua-
tions (α ¼ 0.5). SA parameters for the time-averaged MSD as a
function of (a) the lag time (d ¼ 1) and (b) the measurement time
(d ¼ 3). The solid and dashed lines represent Eq. (14) and the EB
parameter in the CTRW, respectively. Symbols are the results of
numerical simulations, where we simulated dynamics of the
QTM (see Supplemental Material [25]).
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sum of trapping times. Therefore, it will be found in other
models beyond the QTM like the random comb model
and the results are truly universal. We have also quantified
the degree of the non-SA property by the SA parameter.
The fluctuations of diffusivity in quenched environments
are much larger than those in the annealed model. Note that
the limits tm → ∞ and L → ∞ in the SA parameter are not
commutable. This is because partial equilibrium in the
infinite system does not hold, as shown in Refs. [32,33].
Moreover, when we look at hδrΔð0Þ2idis with a nonequili-
brium initial condition, it shows subdiffusion for a small Δ
regime (see Supplemental Material [25]).
In an experiment, self-averaging can be tested by

repeating experiments in many environments, e.g., different
cells of the same type in single-molecule experiments. For
the QTM with a finite size, the process is non-SA but
ergodic. In single-particle-tracking experiments, one might
find fluctuations of diffusivity in one cell and in addition
those in between different cells of the same type. Thus, our
work opens the way to quantify fluctuations within a cell
(EB parameter) and among different cells (SA parameter).
The time-averaged MSD depends on both the lag time

and the measurement time (unlike the ensemble average).
The relative magnitude of these two times compared to tsam
yields rich behaviors compared to normal diffusion proc-
esses. For long measurement times, compared with tsam,
diffusivity decreases with the system size L [Eq. (9)], since
as L is increased the trapping times encountered by the
particle become longer.
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