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We propose a superconducting circuit that shows a superradiant phase transition (SRPT) in thermal
equilibrium. The existence of the SRPT is confirmed analytically in the limit of an infinite number of
artificial atoms. We also perform a numerical diagonalization of the Hamiltonian with a finite number of
atoms and observe an asymptotic behavior approaching the infinite limit as the number of atoms increases.
The SRPT can also be interpreted intuitively in a classical analysis.
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In a variety of studies involving the light-matter inter-
action, the realization of a superradiant phase transition
(SRPT) still remains a challenging subject. This refers to
the spontaneous appearance of the coherence amplitude of
transverse electromagnetic fields due to the light-matter
interaction in the thermal equilibrium. Though the laser
also shows the spontaneous coherence, it is generated by
population-inverted matters, i.e., in a nonequilibrium sit-
uation. The SRPT was first proposed theoretically around
1970 [1–3], but later its absence in the thermal equilibrium
was pointed out based on the so-called A2 term [4–7] and,
more generally, on the minimal-coupling Hamiltonian
[8,9]. A SRPT analogue in nonequilibrium situations
was proposed theoretically [10] and was observed exper-
imentally in cold atoms driven by laser light [11,12].
Realizing a thermal-equilibrium SRPT and comparing it
with the nonequilibrium SRPT (including a laser) are
fundamental subjects bridging statistical physics (or
thermodynamics), established in equilibrium situations,
and electrodynamics (or the light-matter interaction), which
has been long discussed mostly in nonequilibrium situa-
tions. However, the SRPT has not yet been realized in the
thermal equilibrium since the first proposal [1–3].
While the atomic systems are basically described by

the minimal-coupling Hamiltonian [8,9], there are a large
number of degrees of freedom in designing the
Hamiltonians of superconducting circuits, where the exist-
ence of the SRPT is still under debate [13–16]. In this
Letter, we propose the superconducting circuit depicted in
Fig. 1. We derive the Hamiltonian of this circuit by the
standard quantization procedure [17] as in the recent work
which showed the absence of SRPT in a different circuit
structure [16]. We examine its existence in our circuit by
using the semiclassical approach [3,8,9,18,19], which is
known to be justified in the thermodynamic limit (with an
infinite number of atoms), as well as by straightforwardly
diagonalizing the Hamiltonian with a finite number of
atoms.

The circuit shown in Fig. 1 has a LC resonator with
capacitance CR and inductance LR, coupled to N parallel
branches containing a Josephson junction. Each junction
has Josephson energy EJ and shunt capacitance CJ and is
connected to the LC resonator through inductance Lg

individually. This configuration is distinct from the conven-
tional inductive [16,20] and capacitive [16] couplings,
where the existence of the SRPT was proposed [13,15]
but later denied [14,16]. However, the no-go result was
shown only for specific configurations [14,16] and is not
applied to ours. We first explain why the SRPT occurs in
our circuit by analyzing the form of the Hamiltonian.
We apply a static external flux bias Φext ¼ Φ0=2 in the

loop between the resonator and the junctions, where Φ0 ¼
h=ð2eÞ is the flux quantum. Alternatively, we can remove
the external field and replace the Josephson junctions with
π junctions, which have an inverted energy-phase relation
[21]. We define the ground and the branch fluxes ϕ and
fψ jg (j ¼ 1;…; N) as in Fig. 1. According to the flux-
based procedure [17], the Hamiltonian is derived straight-
forwardly and quantized as

Ĥ ¼ q̂2

2CR
þ ϕ̂2

2LR
þ
XN
j¼1

�
ρ̂j

2

2CJ
þ ðψ̂ j − ϕ̂Þ2

2Lg
þEJ cos

2πψ̂ j

Φ0

�
:

ð1Þ

Here, q̂ and fρ̂jg are the conjugate momenta of ϕ̂ and fψ̂ jg,
respectively, satisfying ½ϕ̂; q̂� ¼ iℏ and ½ψ̂ j; ρ̂j0 � ¼ iℏδj;j0 .

FIG. 1. Superconducting circuit showing the SRPT in thermal
equilibrium under a static external magnetic flux biasΦext ¼ Φ0=2.
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Let us first understand intuitively the SRPT in our circuit
by a classical analysis. The inductive energy in Eq. (1) is
extracted as

Uðϕ;fψ jgÞ¼
ϕ2

2LR
þ
XN
j¼1

�ðψ j−ϕÞ2
2Lg

þEJ cos
2πψ j

Φ0

�
: ð2Þ

The energy minima correspond to the ground state in the
classical physics. Though the parabolic terms ϕ2=ð2LRÞ and
ðψ j − ϕÞ2=ð2LgÞ are minimized at ϕ ¼ ψ j ¼ 0, the anhar-
monic termEJ cosð2πψ j=Φ0Þ is minimized at ψ j ¼ �Φ0=2.
This is owing to the external flux biasΦext ¼ Φ0=2; the sign
of the last term in Eqs. (1) and (2) is positive, because the
phase difference across the Josephson junction is given by
π − 2πðψ j=Φ0Þ due to the flux quantization in each loop
consisting of LR, Lg, and the junction. This competition
between the parabolic and anharmonic inductive energies is
the trick for realizing the SRPT.
In order to simplify the following discussion, we define

an inductance LJ ≡ ½Φ0=ð2πÞ�2=EJ by the Josephson
energy EJ. The inductive energy U in Eq. (2) is minimized
for ψ j ¼ ½1þ Lg=ðNLRÞ�ϕ, which is obtained from
∂U=∂ϕ ¼ 0. Because the SRPT is basically discussed in
the thermodynamic limit N → ∞, we scale the inductance
of the LC resonator by the number N of junctions as
LR ¼ LR0=N, where LR0 is N-independent inductance.
Then, the inductive energy U=N per junction becomes
independent of N. In Fig. 2, we plotU=ðNEJÞ as a function
of 2πϕ=Φ0 under the condition of ψ j ¼ ð1þ Lg=LR0Þϕ.
The five curves in Fig. 2 are the results for different LR0
under a fixed Lg of 0.6LJ. The inductive energy U is
minimized at ϕ ¼ ψ j ¼ 0 for LR0 < LJ − Lg ¼ 0.4LJ,
because the parabolic terms dominate. In contrast, the
anharmonic term dominates when LR0 satisfies

NLR ¼ LR0 > LJ − Lg: ð3Þ
Then,U is minimized at the two points with nonzero fluxes
ϕ ¼ �ϕ0. In quantum theory, the real ground state is a
superposition of the two minimum points [conceptually
speaking, jgi ¼ ðjϕ0i þ j − ϕ0iÞ=

ffiffiffi
2

p
] and the expectation

values of the fluxes are zero hgjϕ̂jgi ¼ hgjψ̂ jjgi ¼ 0 for
finite N. However, the thermodynamic limit N → ∞

justifies the classical approach, because the height of the
potential barrier in the whole system is proportional to N.
Then, in this limit, we find a spontaneous appearance of
coherence (symmetry breaking); i.e., nonzero ϕ ¼ �ϕ0

and ψ j ¼ �ð1þ Lg=LR0Þϕ0 appear in the circuit. This
transition from ϕ ¼ 0 to�ϕ0 by changing LR0 corresponds
to the SRPT in the sense of the quantum phase transition
[22,23], as discussed below in a quantum analysis.
Let us compare Eq. (1) with the minimal-coupling

Hamiltonian (under the long-wavelength approximation
as discussed in Ref. [8])

Ĥmin ¼ Ĥem þ
XN
j

ðp̂j − eÂÞ2
2m

þ V̂ðfx̂jgÞ: ð4Þ

Here, Ĥem represents the energy of the transverse electro-
magnetic fields described by the vector potential Â and its
conjugate momentum. The second and the last terms are,
respectively, the kinetic and the Coulomb interaction
energies of particles with massm, charge e, and momentum
fp̂jg at position fx̂jg. The kinetic energy ðp̂j − eÂÞ2=ð2mÞ
corresponds to the inductive one ðψ̂ j − ϕ̂Þ2=ð2LgÞ at Lg in
Eq. (1). In this way, ψ̂ j and ϕ̂ correspond to p̂j and Â,
respectively, and then ρ̂j corresponds to x̂j. The no-go
theorem of the SRPT in the minimal-coupling Hamiltonian
relies on the fact that the mixing term ðp̂j − eÂÞ2=ð2mÞ and
the anharmonic term V̂ðfx̂jgÞ are, respectively, described
by p̂j and x̂j [8,9]. In contrast, in our Hamiltonian, Eq. (1),
both the mixing ðψ̂ j − ϕ̂Þ2=ð2LgÞ and the anharmonicity
EJ cosð2πψ̂ j=Φ0Þ are described by ψ̂ j. This is the essence
for avoiding the no-go theorem [8,9] and also for the
transition discussed in the above classical analysis. In the
Supplemental Material [24], we also explain how we avoid
the no-go results based on the A2 [4–7] and the P2 [27,28]
terms. The latter corresponds to the direct qubit-qubit
interaction discussed recently in Ref. [16].
By decomposing

P
N
j¼1ðψ̂ j − ϕ̂Þ2=ð2LgÞ in Eq. (1), we

obtain Nϕ̂2=ð2LgÞ. This corresponds to the A2 term [4,5]
(since ϕ̂ corresponds to Â) and renormalizes the frequency of
the LC resonator as ωc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN=Lg þ 1=LRÞ=CR

p
. Here, in

order tomakeωc independent ofN, in addition to the scaling
LR ¼ LR0=N, we also scale the capacitance as CR ¼ NCR0,
where CR0 is N-independent capacitance. Introducing
an annihilation operator â≡ ϕ̂=

ffiffiffiffiffiffiffiffiffiffiffi
2ℏZc

p þ iq̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zc=ð2ℏÞ

p
,

where the impedance Zc is scaled as Zc ¼ Zc0=N for

Zc0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Lg þ 1=LR0Þ−1=CR0

q
, the Hamiltonian in

Eq. (1) is rewritten as

Ĥ ¼ ℏωc

�
â†âþ 1

2

�
−

ϕ̂

Lg

XN
j¼1

ψ̂ j þ
XN
j¼1

Ĥatom
j : ð5Þ

Here, the Hamiltonian involving the jth junction is

FIG. 2. Normalized inductive energy [Eq. (2)] versus 2πϕ=Φ0

under the condition of ψ j ¼ ð1þ Lg=LR0Þϕ, which is obtained
by ∂U=∂ϕ ¼ 0. ForNLR ¼ LR0 > LJ − Lg, the inductive energy
shows two minima at ϕ ≠ 0. This transition corresponds to the
SRPT in the sense of the quantum phase transition. The parameter
is Lg ¼ 0.6LJ .
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Ĥatom
j ¼ ρ̂j

2

2CJ
þ ψ̂ j

2

2Lg
þ EJ cos

2πψ̂ j

Φ0

: ð6Þ

Althoughwe cannot obtain Ĥatom
j by simply extracting a part

of elements from the circuit in Fig. 1, this anharmonic
oscillator described by ψ̂ j and ρ̂j is formally considered to be
our “atom.”The first term inEq. (5) is theHamiltonian of our
“photons,”which is described by ϕ̂ and q̂ or â, renormalized
by the A2 term. The second term in Eq. (5) is our “photon-
atom interaction.” In the following, we discuss the SRPT in
terms of these photons and atoms in relation to previous
discussions on the Dicke model [1–3,13,15,22,23].
In contrast to the two-level atoms considered in the

Dicke model, our atoms have weakly nonlinear bosonic
transitions (we explain in detail the parameters used in the
following calculations in the Supplemental Material [24]).
In Fig. 3(b), the solid curve represents the atomic wave
function at each atomic level, which are calculated from
Ĥatom

j in Eq. (6). The dashed curve represents the inductive
energy as a function of 2πψ j=Φ0. In this Letter, we
basically consider the case LJ > Lg ¼ 0.6LJ. Then, since
the anharmonic energy EJ cosð2πψ j=Φ0Þ is smaller than
the parabolic one ψ j

2=ð2LgÞ, as seen in Fig. 3(b), the
inductive energy in each atom is minimized at ψ j ¼ 0, and
the nonlinearity is only about 3%.
Here, we tentatively neglect the anharmonicity

as EJ cosð2πψ̂ j=Φ0Þ≃ EJ − ψ̂ j
2=ð2LJÞ and assume that

the transitions in each atom are described approximately
by bosonic annihilation operator b̂j ¼ ψ̂ j=

ffiffiffiffiffiffiffiffiffiffiffi
2ℏZa

p þ
iρ̂j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Za=ð2ℏÞ

p
as

Ĥ ≃ ℏωc

�
â†âþ 1

2

�
þ
XN
j¼1

ℏωa

�
b̂†j b̂j þ

1

2

�

−
ℏgffiffiffiffi
N

p ðâþ â†Þ
XN
j¼1

ðb̂j þ b̂†jÞ þ NEJ: ð7Þ

Here, ωa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=Lg − 1=LJÞ=CJ

p
is the atomic transition

frequency, and the interaction strength g is expressed as
g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NZcZa
p

=ð2LgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Zc0Za

p
=ð2LgÞ, where we define

another impedance Za ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Lg − 1=LJÞ−1=CJ

q
.

Two transition frequencies ω� of the bosonized
Hamiltonian in Eq. (7) are obtained easily by the
Bogoliubov transformation [29,30] as

ω�2 ¼ ωc
2 þ ωa

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωc

2 − ωa
2Þ2 þ 16g2ωcωa

p
2

: ð8Þ

Note that ωc, ωa, g, and ω� are not scaled with N by the
scaling LR ¼ LR0=N and CR ¼ NCR0. The expression in
Eq. (8) is exactly the same as the one derived in the
Holstein-Primakoff approach for the Dicke model [22,23].
When ω− becomes imaginary, the normal ground state
(showing hgjâjgi ¼ hgjϕ̂jgi ¼ 0) becomes unstable.
However, it is an artifact due to the neglect of the

anharmonicity in Eq. (7). As found in the classical analysis
in Fig. 2, the real ground state appears at an inductive
energy minimum with ϕ ¼ �ϕ0 (superradiant ground state
with a photonic amplitude of hgjâjgi≃�ϕ0=

ffiffiffiffiffiffiffiffiffiffiffi
2ℏZc

p
) in

the presence of the anharmonicity [6,7,22,23,31].
Equation (8) suggests that the superradiant ground state
appears for 4g2 > ωcωa, which gives exactly the same
condition as Eq. (3) obtained by the classical approach.
While these conditions are certainly satisfied in our circuit,
we will obtain a more rigorous condition of the SRPT in the
following semiclassical analysis.
The above classical and bosonic quantum analyses imply

the SRPT in the sense of the quantum phase transition, i.e.,
in the limit of T → 0. For finite temperature T ≥ 0, we
calculate the photonic amplitude αeq by the partition

FIG. 3. (a) Normalized photonic amplitude αeq=
ffiffiffiffi
N

p
in the

thermodynamic limit (infinite number of atoms N → ∞) versus
LR0 ¼ NLR and temperature kBT=h in frequency units. The
SRPT occurs at Lcrit

R0 at T ¼ 0. (b) Atomic levels, potential, and
wave functions. (c) Zero-point energy shift, (e) transition fre-
quency, and (f) number of photons per atom versus LR0. Dashed
curves are obtained in the thermodynamic limit, and solid curves
are calculated for N ¼ 1;…; 5. In panel (e), the dash-dotted
curves represent the transition frequencies for exciting an odd
number of bosons, while the solid curves are those for exciting an
even number of bosons. (d) Photonic frequency ωc, renormalized
atomic frequency ~ωa, and renormalized light-matter interaction
strength ~g versus LR0. The SRPT occurs when ~g reaches the
critical interaction strength

ffiffiffiffiffiffiffiffiffiffiffi
~ωaωc

p
=2 plotted by the dotted line.

The parameters are LJ ¼ 0.75 nH, Lg ¼ 0.6LJ ¼ 0.45 nH,
CJ ¼ 24 fF, and CR0 ¼ 2 fF ¼ CR=N.
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function ZðTÞ ¼ Tr½e−Ĥ=kBT � in the semiclassical analysis
[3,8,9,18,19] (see the Supplemental Material [24]).
In Fig. 3(a), the normalized photonic amplitudeαeq=

ffiffiffiffi
N

p
is

color plotted as a function of the inductanceLR0 ¼ NLR and
temperature kBT=h in frequency units. What is important is
the ratio of the inductances. The Josephson inductance is
assumed to be LJ ¼ ½Φ0=ð2πÞ�2=EJ ¼ 0.75nH, and the
connecting inductance Lg ¼ 0.6LJ ¼ 0.45 nH. At T ¼ 0,
the nonzero photonic amplitude αeq appears for LR0 >
Lcrit
R0 ≃ 0.34 nH, which roughly agrees with the classical

result LJ − Lg ¼ 0.30 nH in Eq. (3). The deviation is due to
the quantum treatment of atoms in the semiclassical analysis.
The photonic flux ϕeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ℏZc0

p
αeq=

ffiffiffiffi
N

p
roughly agrees

with ϕ0 giving the minimum of the inductive energy U in
Eq. (2) in the classical analysis. The nonzero αeq and ϕeq

appear even at finite temperatures, and the critical temper-
ature Tc increases with increasing LR0. This is the main
evidence of the thermal-equilibrium SRPT in our circuit,
which is obtained in the thermodynamic limit N → ∞.
The transition frequencies, which are experimentally

observable, are obtained by quantizing the fluctuation
around the equilibrium values of the fluxes ϕeq and ψ eq
determined in the semiclassical approach [24]. A similar
analysis has been performed in Refs. [22,23] for the Dicke
Hamiltonian. At T ¼ 0, the original Hamiltonian in Eq. (1)
is expanded with respect to the fluctuations δϕ̂ ¼ ϕ̂ − ϕeq

and δψ̂ j ¼ ψ̂ j − ψ eq up to Oðδψ̂ j
2Þ [24] as

Ĥ ≃ q̂2

2CR
þ δϕ̂2

2LR
þ
XN
j¼1

�
ρ̂2

2CJ
þ ðδϕ̂ − δψ̂ jÞ2

2Lg
−
δψ̂ j

2

2 ~LJ

�

þ NðEJ þ δεÞ: ð9Þ
Here, ~EJ ¼ EJhcosð2πψ̂=Φ0Þieffg and ~LJ ¼ ½Φ0=ð2πÞ�2= ~EJ

are calculated by an effective Hamiltonian in the semi-
classical approach [24] and are modified by the quantum
treatment of atoms even before the SRPT. The zero-point
energy shift per atom is δε ¼ ϕeq

2=ð2LR0Þ þ ðϕeq − ψ eqÞ2=
ð2LgÞ þ ~EJ − EJ. This shift δε=h is plotted as the dashed
curve in Fig. 3(c). After the appearance of nonzero
amplitudes ϕeq and ψ eq, the zero-point energy is decreased
by the light-matter interaction.
The transition frequencies ~ω� are calculated also from

Eq. (8) but by replacing ωa and g by ~ωa ¼ ½ð1=Lg −
1= ~LJÞ=CJ�1=2 and ~g ¼ ½Zc0

~Za�1=2=ð2LgÞ, respectively,

where ~Za ¼ ½ð1=Lg − 1= ~LJÞ−1=CJ�1=2. ~ωa, ωc, and ~g are
plotted in Fig. 3(d). When ~g reaches the critical valueffiffiffiffiffiffiffiffiffiffiffi

~ωaωc

p
=2 plotted by the dotted line, the SRPT occurs.

Compared with the simple condition 4g2 > ωcωa (giving
the critical inductance LJ − Lg ¼ 0.30 nH) obtained from
Eq. (7) under the bosonic approximation, the deviation is due
to the consideration of the anharmonicity in Eq. (9). The
lower transition frequency ~ω− is plotted by the dashed line in
Fig. 3(e). It never becomes of imaginary value but shows a

cusp at Lcrit
R0 . In contrast to the Dicke model [22,23], ~ω− does

not become zero even at Lcrit
R0 in our system. It is due to the

presence of multiple atomic levels with anharmonicity (our
atom cannot be equivalent with the two-level limit because
LJ > Lg is required). On the other hand, in the limit of
negligible anharmonicity (LJ ≫ Lg), the SRPT condition in
Eq. (3) is justified, and ~ω− drops to zero at Lcrit

R0 .
Here, we note that, in the limit of Lg → 0, we definitively

obtain ψ j ¼ ϕ, as seen in Eq. (1) or in the circuit of Fig. 1,
while the transition in Fig. 2 itself occurs in the classical
approach. We also obtain ωa; g → ∞, while 4g2 > ωcωa is
reduced to LR0 > LJ, and the transition still remains.
However, in order to distinguish the photons and atoms
and to discuss the SRPT, we need a finite Lg; this is
especially because, as far as we checked numerically, LR0,
LJ, and Lg are desired to be in the same order to observe a
sharp drop of the transition frequency for finite N, as we
will see in the following.
In addition to the above semiclassical approach justified

in the thermodynamic limit N → ∞, we also diagonalize
numerically the original Hamiltonian in Eq. (5) for N ¼
1; 2;…; 5 in order to predict the tendency to be observed in
experiments with a finite number of junctions. To express
the Hamiltonian with a sparse matrix and reduce the
computational cost, we expand cosð2πψ̂ j=Φ0Þ and consider
the terms up to Oðψ̂ j

4Þ (see the details of the numerical
diagonalization in the Supplemental Material [24]).
Because the total Hamiltonian in Eqs. (1) or (5) has

parity symmetry, the expectation value of the photonic
amplitude in the ground state is basically zero for finite N.
The nonzero αeq is obtained only in the thermodynamic
limit N → ∞. In the numerical diagonalization of the
Hamiltonian, we first consider the subsystem with even
numbers of bosons as in Ref. [23], because it is not mixed
with the other subsystem with odd numbers of bosons. For
the obtained ground state jgi with an energy Eg, the
expectation number of photons hgjâ†âjgi=N per atom is
plotted in Fig. 3(f) for N ¼ 1;…; 5. The dashed curve
shows αeq

2=N in the thermodynamic limit. Figure 3(c)
shows the zero-point energy shift δε ¼ ðEg − ℏωc=2Þ=N −
εa0 per atom, where εa0 is the atomic zero-point energy
seen in Fig. 3(b). The transition frequency from the ground
state to the first excited state in the even-number subsystem
is plotted as solid curves in Fig. 3(e). It sharply drops
around Lcrit

R0 even with N ¼ 5 atoms and asymptotically
reproduces the thermodynamic limit (dashed curve) for
LR0 > Lcrit

R0 . On the other hand, the dash-dotted curves
represent the transition frequency from the ground
state to the lowest state in the odd-number subsystem.
They asymptotically approach the thermodynamic limit
for LR0 < Lcrit

R0 and vanish for LR0 > Lcrit
R0 , as seen also in

Refs. [20,23]. These characteristic features imply the exist-
ence of the SRPT, i.e., the parity symmetry breaking [22,23].
We conclude that the superconducting circuit in Fig. 1

shows the SRPT in the thermal equilibrium. It was
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confirmed by the semiclassical approach in the thermody-
namic limit. It was also checked by calculating the number
of photons, transition frequency, and zero-point energy
shift in the numerical diagonalization of the Hamiltonian
with a finite number of atoms. Experimentally, the tran-
sition frequency could be observed by measuring the
excitation spectra, which would reveal a drastic behavior
around the critical point, as seen in Fig. 3(e), by changing
LR0, by decreasing the temperature, or by increasing the
number of atoms.
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