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The rapid shape change in Zr isotopes near neutron number N ¼ 60 is identified to be caused by type II
shell evolution associated with massive proton excitations to its 0g9=2 orbit, and is shown to be a quantum
phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N ¼ 50–70 with
many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and BðE2Þ
values are obtained within a single framework in good agreement with experiment, depicting various
shapes in going from N ¼ 50 to 70. The novel coexistence of prolate and triaxial shapes is suggested.
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The shape of the atomic nucleus has been one of the
primary subjects of nuclear structure physics [1], and
continues to provide intriguing and challenging questions
in going to exotic nuclei. One such question is the
transition from spherical to deformed shapes as a function
of the neutron (proton) number N (Z), referred to as shape
transition. The shape transition is visible in the system-
atics of the excitation energies of low-lying states, for
instance, the first 2þ levels of even-even nuclei: it turns
out to be high (low) for spherical (deformed) shapes [1–3].
A shell model (SM) calculation is suited, in principle, for
its description, because of the high capability of calculat-
ing those energies precisely. On the other hand, since the
nuclear shape is a consequence of the collective motion of
many nucleons, the actual application of the SM encoun-
tered some limits in the size of the calculation.
In this Letter, we present results of large-scale

Monte Carlo shell model (MCSM) calculations [4] on
even-even Zr isotopes with a focus on the shape transition
from N ¼ 50 to N ¼ 70, e.g., Ref. [5]. Figure 1(a) shows
that the observed 2þ1 level moves up and down within the
1–2 MeV region for N ¼ 50–58, whereas it is quite low
(∼0.2 MeV) for N ≥ 60 [6–16]. Namely, a sharp drop by a
factor of ∼6 occurs at N ¼ 60, which is consistent with the
corresponding BðE2Þ values shown in Fig. 1(c). These
features have attracted much attention, also because no
theoretical approach seems to have reproduced those rapid
changes covering both sides. More importantly, an abrupt
change seems to occur in the structure of the ground state as
a function of N, which can be viewed as an example of the
quantum phase transition (QPT), satisfying its general
definition to be discussed [17,18]. This is quite remarkable,
as the shape transition is, in general, rather gradual. In
addition, there is much interest in those Zr isotopes from
the viewpoint of the shape coexistence [19].

The advanced version of MCSM [26,27] can cover all
Zr isotopes in this range of N with a fixed Hamiltonian,
when taking a large model space, as shown in Table I. The
MCSM, thus, resolves the difficulties of conventional
SM calculation, where the largest dimension reaches
3.7 × 1023, much beyond its current limit. Note that no
truncation on the occupation numbers of these orbits is
made in the MCSM. The structure of Zr isotopes has been
studied by many different models and theories. For in-
stance, a recent large-scale conventional SM calculation
showed a rather accurate reproduction of experimental data
up to N ¼ 58, whereas it was not extended beyond N ¼ 60

[28]. The 2þ1 levels have been calculated in a wider range in
interacting boson model (IBM) calculations, although the
aforementioned rapid change is absent [29,30]. Some
other works were restricted to deformed states [5,31,32],
or indicated gradual shape changes [33–40].
It is, thus, very timely and needed to apply the MCSM to

Zr isotopes, particularly heavy exotic ones. The
Hamiltonian of the present work is constructed from
existing ones, so as to reduce ambiguities. The JUN45
Hamiltonian is used for the orbits, 0g9=2 and below it [41].
The SNBG3 Hamiltonian [42] is used for the T ¼ 1
interaction for 0g7=2, 1d5=2;3=2, 2s1=2, and 0h11=2. Note that
the JUN45 and SNBG3 interactions were obtained by
adding empirical fits to microscopically derived effective
interactions [41,42]. The VMU interaction [43] is taken for
the rest of the effective interaction. The VMU interaction
consists of the central part given by a Gaussian function in
addition to the π- and ρ-meson exchange tensor force [43].
The parameters of the central part were fixed from
monopole components of known SM interactions [43].
The T ¼ 0 part of the VMU interaction is kept unchanged
throughout this work. The T ¼ 1 central part is reduced by
a factor of 0.75 except for 1f7=2 and 2p3=2 orbits. On top of
this, T ¼ 1 two-body matrix elements for 0g9=2 and above
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it, including those given by the SNBG3 interaction, are
fine-tuned by using the standard method [44,45]. The
observed levels of the 2þ1 and 4þ1 states of 90–96Zr and
the 0þ2 state of 94–100Zr are then used. Since the number of
available data is so small, this cannot be a fit but a minor
improvement. The single-particle energies are determined
so as to be consistent with the prediction of the JUN45
Hamiltonian, the observed levels of 91Zr with spectroscopic
factors, etc. The present SM Hamiltonian is, thus, fixed,
and no change is made throughout all the calculations
below. It is an initial version, and can be refined for better
details.
Figure 1(a) shows excitation energies of the 2þ1;2 states of

the Zr isotopes, indicating that the present MCSM results
reproduce quite well the observed trends. The shape of each
calculated state is assigned as spherical, prolate, triaxial, or
oblate by the method of [46], as will be discussed later. The
calculated 2þ1 state is spherical for N ¼ 52–56, while it
becomes prolate deformed forN ≥ 58. Its excitation energy
drops down at N ¼ 60 by a factor of ∼6, and stays almost
constant, in agreement with experiment. The ratio between
the 4þ1 and 2þ1 levels, denoted R4=2, is depicted in the inset
of Fig. 1(a) in comparison to experiment. The sudden
increase at N ¼ 60 is seen in both experiment and
calculation, approaching the rotational limit, 10=3, indica-
tive of a rather rigid deformation. The R4=2 < 2 for N ≤ 58

suggests a seniority-type structure which stems from the
Z ¼ 40 semimagicity.
Figure 1(b) shows the properties of 0þ1;2 states. Their

shapes are assigned in the same way as the 2þ states. The
ground state remains spherical up to N ¼ 58, and becomes
prolate at N ¼ 60. A spherical state appears as the 0þ4 state
at N ¼ 60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a
direct product of superpositions over original single-
particle states. The optimum amplitudes in such super-
positions are searched based on quantum Monte-Carlo and
variational methods [4,26]. For each MCSM basis vector so
fixed, we can compute and diagonalize its quadrupole

TABLE I. Model space for the shell model calculation.

Proton orbit Magic number Neutron orbit

1f7=2; 2p3=2

82
0h11=2

0g7=2; 1d5=2;3=2; 2s1=2 0g7=2; 1d5=2;3=2; 2s1=2
50

0g9=2 0g9=2
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FIG. 1. (a) 2þ1;2 levels, (b) 0
þ levels of Zr isotopes as a function

of N. Symbols are present theoretical results with the shape
classification as shown in the legends (see the text for details).
Solid lines denote experimental data [6–16]. Dashed lines
connect relevant results to guide the eye. The ratio between
the 4þ1 and 2þ1 levels is shown in the inset of (a) in comparison to
experiment. The lowest four 0þ levels are shown for 100Zr.
(c) BðE2; 2þ → 0þÞ values as a function of N. Experimental data
are from [13,20–25]. (d) Deformation parameter β2. The values
by other methods are shown, too.

PRL 117, 172502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

21 OCTOBER 2016

172502-2



matrix. This gives us the three axes of the ellipsoid with
quadrupole momenta Q0 and Q2 in the usual way [2]. One
can then plot this MCSM basis vector as a circle on
the potential energy surface (PES), as shown in Fig. 2. The
overlap probability of this MCSM basis vector with the
eigenstate is indicated by the area of the circle. Thus, one
can pin down each MCSM basis vector on the PES
according to its Q0 and Q2 with its importance by the
area of the circle. Note that the PES in Fig. 2 is obtained by
constrained HF calculation for the same SM Hamiltonian,
and is used for the sake of an intuitive understanding of
MCSM results. This method, called a T-plot [46,47],
enables us to analyze SM eigenstates from the viewpoint
of intrinsic shape. Figure 2(a) shows that the MCSM basis
vectors of the 0þ1 state of 98Zr are concentrated in a tiny
region of the spherical shape, while its 0þ2 state is composed
of basis vectors of prolate shape with Q0 ∼ 350 fm2 [see
Fig. 2(b)]. A similar prolate shape dominates the 0þ1 state of
100Zr with slightly larger Q0, as shown in Fig. 2(c). We
point out the abrupt change of the ground-state property
from Fig. 2(a) to 2(c), and will come back to this point later.
The T-plot shows stable prolate shape for the 0þ1 state from
100Zr to 110Zr [see Fig. 2(d)].
Figure 1(c) displays BðE2; 2þ1 → 0þ1 Þ values, with small

values up to N ¼ 58 and a sharp increase at N ¼ 60,
consistent with experiment [13,20–23]. The effective
charges ðep; enÞ ¼ ð1.3e; 0.6eÞ are used. Because the
BðE2; 2þ1 → 0þ1 Þ value is a sensitive probe of the quadru-
pole deformation, the salient agreement here implies that
the present MCSM calculation produces quite well the
shape evolution as N changes. In addition, theoretical and
experimental BðE2; 2þ2 → 0þ2 Þ values are shown for
N ¼ 54 [24] and 56. The value for N ¼ 56 has been
measured by experiment, discussed in the following Letter
[25], as an evidence of the shape coexistence in 96Zr. The
overall agreement between theory and experiment appears
to be remarkable. It is clear that the 2þ2 → 0þ2 transitions at
N ¼ 54 and 56 are linked to the 2þ1 → 0þ1 transitions in
heavier isotopes, via 2þ1 → 0þ2 transition at N ¼ 58.
Figure 1(d) shows the deformation parameter β2 [1].

The results of IBM [30], HFB [34], and FRDM [38]
calculations are included, exhibiting much more
gradual changes. The MCSM values are obtained from
BðE2; 2þ1 → 0þ1 Þ.

The systematic trends indicated by the 2þ1 level, the ratio
R4=2, the BðE2; 2þ1 → 0þ1 Þ value (or β2), and the T-plot
analysis are all consistent among themselves and in agree-
ment with relevant experiments. We can, thus, identify the
change between N ¼ 58 and 60 as a QPT, where in general
an abrupt change should occur in the quantum structure of
the ground state for a certain parameter [17,18]. The
parameter here is nothing but the neutron number N,
and the transition occurs from a “spherical phase” to a
“deformed phase.” Figure 1(b) demonstrates that the 0þ1
state is spherical up to N ¼ 58, but the spherical 0þ state is
pushed up to the 0þ4 state at N ¼ 60, where the prolate-
deformed 0þ state comes down to the ground state from the
0þ2 state at N ¼ 58. This sharp crossing causes the present
QPT. The discontinuities of various quantities, one of
which can be assigned the order parameter, at the crossing
point imply the first-order phase transition. The shape
transition has been noticed in many chains of isotopes and
isotones, but appears to be rather gradual in most cases, for
instance, from 148Sm to 154Sm. The abrupt change in the
Zr isotopes is exceptional.
We comment on the relation between the QPT and the

modifications of the interaction mentioned above. Without
them, the 2þ1 level is still ∼0.2 MeV at N ¼ 60 close to
Fig. 1(a), while at N ¼ 58 it is higher than the value in
Fig. 1(a). Thus, the present QPT occurs rather insensitively
to the modifications, whereas experimental data can be
better reproduced by them.
We now discuss the origin of such abrupt changes.

Figure 3(a) displays the occupation numbers of proton
orbits for the 0þ1;2 states of 98Zr, the 0þ1 state of 100Zr and
the 0þ1;2 states of

110Zr. From the spherical 0þ1 to prolate 0þ2
states of 98Zr, the occupation number of the proton 0g9=2
increases from 0.4 to 3.5, while those of the pf-shell orbits
decrease. The proton 0g9=2 orbit is more occupied in the
prolate 0þ1 state of 100;110Zr.
Figure 3(b) shows effective single-particle energies

(ESPE) of neutron orbits calculated with the occupation
numbers of the SM eigenstates, shown in Fig. 3(a) (see
Refs. [46,47] for explanations). At a glance, one notices
that the ESPEs from 2s1=2 to 0g7=2 are distributed over a
range of 4 MeV for the 0þ1 state of 98Zr, but are within
2 MeV for the prolate states, such as 0þ2 of 98Zr, 0þ1 of
100Zr, and 0þ1 of 110Zr. We notice also a massive (3.5–5.5)

FIG. 2. T-plots for 0þ1;2 states of 98;100;110Zr isotopes.
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excitation of protons into 0g9=2 in these prolate states [see
Fig. 3(a)]. These two phenomena are correlated, and are,
indeed, predicted in the type II shell evolution scenario
[46,47], where particular particle-hole excitations can vary
the shell structure significantly. (See Ref. [47] for an
overview of type I and II shell evolutions, and Ref. [25]
for the discussion on 96Zr). To be more concrete, protons in
the 0g9=2 orbital lower the ESPEs of neutron 0g7=2 and
0h11=2 orbitals more than other orbits. For the 0g9=2-0g7=2
coupling, the tensor and central forces work coherently
[43,48,49], and substantial lowering (∼2 MeV) occurs. In
the 0g9=2-0h11=2 case, the tensor and central forces work
destructively but the net effect is still lowering, though
weaker than the other case. Regarding the central force, the
attraction between unique-parity orbits is stronger than the
average due to similarities in radial wave functions, as also
mentioned earlier by Federman and Pittel [47,50]. The
present deformation is primarily a result of the quadrupole
component of the effective interaction, and is enhanced by
coherent contributions of various configurations (Jahn-
Teller effect [51]). If single-particle energies are spread
with sizable gaps in between, such coherence is disturbed
and the deformation is suppressed. In the present prolate
states, by distributing protons and neutrons in a favorable
way partly by particle-hole excitations, ESPEs can be
optimized for stronger deformation as much as possible,
thanks to the monopole properties of the central and tensor
forces [43,48,49]. This is the idea of type II shell evolution
[46,47], and one finds that it occurs here.
Such reorganization of the shell structure involves

substantial reconfiguration of protons and neutrons (or
type II shell evolution), leading to more different

configurations between the normal states and the states
with this deformation-optimized shell structure. This
property results in a suppressed mixing of two such states
even around their crossing point. The abrupt change, thus,
appears with almost no mixing, leading to a QPT. In order
to have such a situation, a unique-parity orbit, like 0g9=2,
should sit just above a closed shell. This can be fulfilled in
the 38Sr isotopes to a certain extent with similar but less
distinct systematic changes. In other elements, however,
there is no such case known so far, making the Zr (and Sr)
isotopes quite unique at this time. In fact, other cases with
somewhat weaker effects of type II shell evolution turn
out to be shape coexistence in various forms. For instance,
in 68Ni case, the proton pf shell plays a similar role to
the present neutron orbits, but has somewhat weaker
collectivity [46,47].
Figure 4 indicates that the prolate ground bands are

similar between 100Zr and 110Zr, but an intriguing differ-
ence appears in side bands. Figure 4(a) depicts the
coexistence of the prolate and oblate bands with reasonable
agreement to experiment. The excited band of 110Zr
corresponds to a triaxial shape with a profound local
minimum at γ ∼ 30° in Fig. 2(e). It coexists with the
prolate band in such a close energy, because their
ESPEs are so different [see Fig. 3(b)] due to different
proton occupations shown in Fig. 3(a). Note that neutron
ESPEs for the 0þ2 have two substructures with a gap
between 0h11=2 and 1d3=2. The BðE2Þ values in this triaxial
band are almost identical to those given by the rigid-triaxial
rotor model of Davydov and Filippov with γ ¼ 28° [52,53].
Their prediction normalized by the BðE2; 2þ2 → 0þ2 Þ value
is included in Fig. 4(b). Type II shell evolution thus
produces another interesting case. The transition from
Figs. 2(c) to 2(d) and 2(e) suggests a possible second-
order phase transition at larger N values, as a future issue.
In summary, a quantum phase transition of the nuclear

shape has been shown to occur in the Zr isotopes. The abrupt
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change appears with a fixed Hamiltonian through type II
shell evolution. The reorganization of the shell structure due
to type II shell evolution provides us with a new way to look
into nuclear structure, and is expected to occur in other
nuclei. The lowest states of these Zr isotopes provide a
variety of shapes and their coexistence (see Ref. [25] for
96Zr), including a novel situation of prolate-triaxial coex-
istence. Further investigations, for instance on octupole
shapes, are of much interest, e.g., Refs. [25,54].
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