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We present the first next-to-next-to-leading-logarithmic resummation for the two-jet rate in eþe−

annihilation in the Durham and Cambridge algorithms. The results are obtained by extending the ARES

method to observables involving any global, recursively infrared and collinear safe jet algorithm in
eþe− collisions. As opposed to other methods, this approach does not require a factorization theorem
for the observables. We present predictions matched to next-to-next-to-leading order and a comparison to
LEP data.
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Jet rates and event shapes in electron-positron collisions
played a crucial role in establishing QCD as the theory of
strong interactions; see, e.g., [1,2]. Nowadays, these
observables are still among the most precise tools used
for accurate extractions of the main parameter of the theory,
the strong coupling constant αs. These fits rely on compar-
ing precise measurements of distributions to accurate
perturbative predictions supplemented with a modeling
of nonperturbative effects. Fixed-order predictions up to
next-to-next-to-leading order (NNLO) for eþe− → 3 jets
are available [3–7]. However, they are not reliable in the
two-jet limit, where the cross section is dominated by
multiple soft-collinear emissions. In this region, terms as
large asOðαnsL2nÞ [where L ¼ lnð1=vÞ] appear to all orders
in the integrated distributions of an observable v that
vanishes in the two-jet limit. These large logarithms
invalidate fixed-order expansions in the coupling constant,
and reliable predictions can be obtained only by resumming
the logarithmically enhanced terms to all orders in αs.
Double logarithmic terms OðαnsL2nÞ are known to expo-
nentiate (see, e.g., Ref. [8]) and give rise to a well-known
Sudakov peak in differential distributions, where most of
the data lie. For exponentiating observables, it is customary
to define leading logarithms (LL) as terms of the form
αnsLnþ1 for the logarithm of the cross section, next-to-
leading logarithms (NLL) as αnsLn, and next-to-next-to-
leading logarithms (NNLL) as αnsLn−1. For several eþe−
observables, NNLL predictions (in some cases even
beyond) are nowadays available [9–17]. On the contrary,
two-jet rates have been described only at NLL accuracy so
far [18]. The lack of precise theory predictions close to the

peak of the distribution limits the fit range that can be used
to extract αs and results in larger perturbative uncertainties
in the latter. Among the existing fits, extractions from the
thrust and C parameter [19–21] that rely on the most
precise theory predictions show a tension with the world
average determination of the coupling [22]. One of the
issues is that at LEP energies nonperturbative corrections
are sizable, and the separation between perturbative and
nonperturbative effects is subtle. Fits of αs from the two-jet
rate have been so far performed based on pure NNLO [23]
or NNLOþ NLL [24–26] results. Owing to the different
sensitivity to nonperturbative effects, an extraction of αs
from NNLOþ NNLL predictions for the two-jet rate and
from the vast amount of high-precision LEP data [27–31]
can shed light on this disturbing tension. The aim of this
Letter is to present the first NNLLþ NNLO results for this
observable.
The two-jet rate is defined through a clustering algorithm

based on an ordering vij and a test variable yij. In the
Durham algorithm [8], the two variables coincide:

yðDÞ
ij ¼ vðDÞ

ij ¼ 2
minfEi; Ejg2

Q2
ð1 − cos θijÞ; ð1Þ

where θij is the angle between (pseudo)particles i and j, Ei

is the energy of the (pseudo)particle i, and Q is the center-
of-mass energy. The clustering procedure selects the pair

with the smallest yðDÞ
ij . If the latter is smaller than a given

ycut, the two particles are recombined into a pseudoparticle
according to some recombination scheme. Otherwise, the
clustering sequence stops, and the number of jets is defined
as the number of pseudoparticles left. In the Cambridge
algorithm [32,33], the test and ordering variables differ and
are defined by

yðCÞij ¼ yðDÞ
ij ; vðCÞij ¼ 2ð1 − cos θijÞ: ð2Þ
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The clustering procedure selects the pair with the smallest

vðCÞij . If the corresponding yðCÞij is smaller than ycut, the two
particles are recombined into a pseudoparticle; otherwise,
the softer particle becomes a jet. This is commonly referred
to as the soft freezing mechanism. The procedure stops
when no pseudoparticles are left. The angular-ordered (AO)
version of the Durham algorithm [32] works identically to
the Cambridge algorithm but without the freezing mecha-
nism. The three-jet resolution parameter y3 is defined as the
minimum ycut that produces two jets. The two-jet rate is the
cumulative integral of the y3 distribution, normalized to
the total cross section σ:

ΣðycutÞ ¼
1

σ

Z
ycut

0

dy3
dσðy3Þ
dy3

: ð3Þ

The resummation technique formulated in Ref. [14] for
event shapes does not require the factorization of the
singular soft and collinear modes in the observable’s
definition, but it rather relies on a property known as
recursive infrared and collinear (rIRC) safety [34]. In this
sense, the all-order treatment does not require a factoriza-
tion theorem for the observable [35]. In the following, we
present an extension of the above method to jet observables
and apply it to the two-jet rate in the Durham and
Cambridge algorithms.
Let y3ðf ~pg; k1;…; knÞ denote a three-jet resolution

which depends on all nþ 2 final-state momenta, where
f ~pg indicates the two Born momenta recoiling against the
secondary emissions k1;…; kn. Each parton ki is emitted
off leg li ¼ 1, 2. The essence of the procedure described in
Ref. [14] is that the NLL cross section is given by all-order
configurations made of partons independently emitted off
the Born legs and widely separated in angle [18]. The
NNLL corrections are obtained by correcting a single
parton of the above ensemble to account for all kinematic
configurations that give rise to NNLL effects [14]. The two-
jet rate at NNLL can be written as

ΣðycutÞ¼e−RNNLLðycutÞ
�
FNLLðycutÞþ

αs
π
δFNNLLðycutÞ

�
;

δFNNLLðycutÞ¼δF clustþδF correlþδF sc

þδF hcþδF recþδFwa; ð4Þ

where the physical origin of the various contributions is
discussed in the following. The NNLL Sudakov radiator
RNNLLðycutÞ expresses the no-emission probability above
ycut and hence embodies the cancellation of infrared and
collinear divergences between the virtual corrections to
the Born process and the unresolved real emissions as
defined in Ref. [14]. As such, it is inclusive over
QCD radiation, and it is universal for all observables
featuring the same scaling in the presence of a single soft
and collinear emission. Since, in the soft-collinear limit,

y3ðf ~pg; kÞ ¼ ðkt=QÞ2, where kt is the emission’s trans-
verse momentum with respect to the emitting quark-
antiquark pair, one can obtain RNNLLðycutÞ from
Appendix B of Ref. [14] by setting a ¼ 2 and taking the
limit bl → 0. All remaining contributions in Eq. (4)
arise from resolved real radiation in different kinematical
regions. In particular, the terms FNLL, δF sc, δF clust, and
δF correl originate from soft and collinear emissions. The
function FNLL is the only NLL correction to the radiator,
and it is defined in terms of soft and collinear gluons
independently emitted off the hard legs and widely sepa-
rated in rapidity. At NLL, the upper rapidity bound is the
same for all emissions and approximated by lnð1= ffiffiffiffiffiffiffi

ycut
p Þ.

The soft-collinear term δF sc arises from considering the
NNLL effects of the running coupling in the soft matrix
element, as well as restoring the exact rapidity bound for a
single soft-collinear emission. The two functions δF clust
and δF correl account for configurations in which at most
two emissions are close in rapidity and produce a pure
Abelian clustering correction (δF clust) and a non-Abelian
correlated (δF correl) one. The hard-collinear (δF hc) and
recoil (δF rec) corrections describe configurations where
one emission of the ensemble is collinear but hard. In
particular, δF hc takes into account the correct approxima-
tion of matrix elements in this region, while δF rec describes
NNLL kinematical recoil effects in the observable. Finally,
the wide-angle correction δFwa encodes configurations in
which a single emission of the ensemble is soft and emitted
at wide angles.
All of the above corrections are obtained following a

method close in spirit to an expansion by regions, i.e., by
taking the proper kinematical limits in the squared ampli-
tudes, the phase space, and the observable constraint
Θ½ycut − y3ðf ~pg; k1;…; knÞ�. This leads to the definition
of a tailored and simplified version of the observable—in
our case, a clustering algorithm—obtained from the
exact one by taking the appropriate asymptotic limit in
each kinematic region. The NNLL corrections that appear
in Eq. (4) have already been derived in the context of
event-shape resummations [14], with the exception of the
clustering correction δF clust, which is absent for event
shapes, and the soft-collinear correction δF sc, which is
generalized in this Letter. In the following, we discuss the
algorithms necessary to compute the NLL multiple emis-
sion function FNLL and the new correction δF clust. The
remaining algorithms are obtained following the same
strategy of taking the asymptotic limit in the region
considered in each correction. They are reported in
Ref. [36] both for the Durham and for the Cambridge
algorithm. We will first discuss the case of the Durham
algorithm, and we will eventually obtain the Cambridge
result as a trivial case of the discussion that follows [37].
We start by recalling the calculation of FNLL, which is

determined by an ensemble of soft-collinear, strongly
angular-ordered partons emitted independently off the
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Born legs. For soft emissions, recoil effects are negligible,
and all transverse momenta can be computed with respect
to the emitting quark-antiquark pair. For each emission ki,
we define the rapidity fraction with respect to the emitting

leg li as ξ
ðliÞ
i ¼ jηij= lnð1= ffiffiffiffiffiffiffi

ycut
p Þ, where lnð1= ffiffiffiffiffiffiffi

ycut
p Þ is the

NLL rapidity bound, common to all emissions at this order.
For this ensemble, the Durham algorithm is approximated
by the following simplified version, ȳsc3 ðf ~pg; k1;…; knÞ
[18]: 1. Find the pseudoparticle kI with the smallest value
of ȳsc3 ðf ~pg; kIÞ ¼ ðktI=QÞ2. 2. Considering only pseudo-
particles kj collinear to the same leg l as kI , find the

pseudoparticle kJ which satisfies ~ktJ · ~ktI > 0 and has the

smallest positive value of ξðlÞJ − ξðlÞI . 3. If kJ is found,
recombine kI and kJ into a new pseudoparticle kP with
~ktP ¼ ~ktI þ ~ktJ and ξðlÞP ¼ ξðlÞJ . Otherwise, kI is clustered
with a Born leg and removed from the list of pseudopar-
ticles. 4. If only one pseudoparticle kP remains, then
ȳsc3 ðf ~pg; k1;…; knÞ ¼ ðktP=QÞ2; otherwise, go back to step
1. Because of the assumption of strong rapidity ordering
between the emissions, this algorithm ensures that FNLL is
free from subleading effects. We point out that, as long as
emissions are strongly ordered in rapidity, the clustering
history depends only on the rapidity ordering among
emissions and not on the actual rapidities.
The above algorithm is used whenever emissions are soft

collinear and widely separated in angle, even beyond NLL
order. In particular, it can be used to compute the NNLL
soft-collinear correction δF sc. This function is made of two
contributions with different physical origins:

δF sc ¼ δF rc
sc þ δF rap

sc : ð5Þ

The term δF rc
sc accounts for NNLL effects in the coupling

which have been neglected in FNLL, while the term δF rap
sc

contains NNLL corrections due to implementing the exact
rapidity bound [jηj < lnðQ=ktÞ] for a single emission k of
the soft-collinear ensemble. While the running-coupling
correction δF rc

sc can be computed using the strongly ordered
algorithm defined above, in complete analogy with event-
shape observables [14], the rapidity correction δF rap

sc

requires some care. Since the exact rapidity bound for
the emission k [jηj < lnðQ=ktÞ] is larger than the NLL
bound shared by the other emissions ki [jηij< lnð1= ffiffiffiffiffiffiffi

ycut
p Þ],

the rapidity correction will be nonzero only if the rapidity
of emission k is, in magnitude, the largest of all. The
rapidity correction is then computed by using the strongly
ordered algorithm defined above, with emission k fixed to
be the most forward or backward of all [36]. Note that this
issue is irrelevant for event shapes, since they are inde-
pendent of the rapidity fractions, and that the derivation of
the rapidity correction given here can be equally applied in
that case.
We now turn to the discussion of the NNLL clustering

correction δF clust, which describes configurations in which

at most two of the independently emitted, soft-collinear
partons have similar rapidities.We denote by ka and kb these
two emissions. The function δF clust accounts for the differ-
ence between the observable ysc3 ðf ~pg; ka; kb; k1;…; knÞ, in
which ka and kb are close in rapidity, and the NLL
observable ȳsc3 ðf ~pg; ka; kb; k1;…; knÞ, in which they are
assumed to be far apart. This correction appears whenever
the observable depends on the emissions’ rapidity fractions;
hence, it is absent in the case of event shapes. Its formulation
is analogous to the corresponding correction derived for
the jet-veto resummation in Ref. [38] and is reported in
Ref. [36].
The algorithm that defines ysc3 ðf ~pg; k1;…; knÞ proceeds

as the NLL one, with an additional condition to be checked
after step 1: 1(b) Let kJa and kJb be the pseudoparticles
containing the partons ka and kb. If these pseudoparticles
are close in rapidity (i.e., if neither ka nor kb have been
recombined with a pseudoparticle with larger ξðlÞ), check
whether kJa and kJb cluster, i.e., if

minfEJa; EJbg2j~θJa − ~θJb j2 < minfktJa ; ktJbg2 ð6Þ

is satisfied, where ~θi ¼ ~kti=Ei. If so, recombine kJa and kJb
by adding transverse momenta vectorially and setting
the rapidity fraction of the resulting pseudoparticle kJ to

ξðlÞJ ≃ ξðlÞJa
≃ ξðlÞJb

. The same algorithm is employed in the
computation of the NNLL correlated correction δF correl
[14] (see [36] for details). In a similar way, we approximate
the original algorithm to compute the remaining NNLL
corrections whose definition follows exactly the one given
for event shapes [14].
The considerations made so far for the Durham case

can be straightforwardly adapted to any other rIRC jet
algorithm. In particular, for the Cambridge algorithm, the
NNLL logarithmic structure is much simpler. In this case,
the ordering variable (2) depends only on the angular
distance between emissions. Since at NLL all partons are
well separated in rapidity, there will be no clustering
between the emissions, and each of them will be recom-
bined with one of the Born legs in an angular-ordered way.
One therefore obtains the trivial result FNLLðλÞ ¼ 1. The
same arguments imply that the NNLL corrections δF sc ¼
δF hc ¼ 0 [36]. Moreover, both the recoil and the wide-
angle corrections admit a simple analytic form given that
the emission emitted either at wide angles or collinearly
will never cluster with any of the other soft-collinear
emissions. As a consequence, the contribution from this
emission factorizes with respect to the remaining ensemble
[36]. The same property applies to the clustering and
correlated corrections which can be entirely formulated
in terms of the clustering condition between two soft-
collinear emissions [36], analogously to the jet-veto
resummation [38]. We note that the freezing condition
present in the Cambridge algorithm does not play a role at
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NNLL. Therefore, the AO version of the Durham algorithm
coincides with the Cambridge algorithm at this order, while
the two differ at NNLO.
We tested our results by subtracting the derivative of the

second-order expansion of Eq. (4) from the Oðα2sÞ distri-
butions obtained with the generator EVENT2 [39], finding
agreement [36]. Moreover, we applied the method to both
the inclusive-kt [40,41] and the flavor-kt [42] algorithms,
finding also perfect agreement with EVENT2 at Oðα2sÞ [43].
We illustrate the impact of our calculation by matching

the NNLL two-jet rate (4) to theOðα3sÞ result obtained with
the program EERAD3 [44] for both the Durham and the
Cambridge algorithms. Figure 1 shows the matched differ-
ential distributions for the three-jet resolution parameter,
defined in (3), at NNLLþ NNLO and NLLþ NNLO.
The results are obtained at Q ¼ MZ, using the coupling
αsðMZÞ ¼ 0.118 and the E recombination scheme. To
impose unitarity, following Ref. [14], we employ the
modified logarithms

ln
1

y3
→ ln

�
1þ

�
xy
y3

�
−
�

xy
y3;max

��
; ð7Þ

in such a way that the xy dependence is N3LL. This also
ensures that the distribution vanishes at the kinematical
endpoint y3;max, taken from the NNLO result. Furthermore,
the variation of xy probes the size of subleading logarithmic
effects. Our theoretical uncertainties are obtained by varying,
one at a time, xy and the renormalization scale μR by a factor
of 2 in either direction around the central values xy ¼ 1 and
μR ¼ Q and taking the envelope of these variations.
For the Durham algorithm, as expected, we observe a

significant reduction of the theory error when going from
NLL to NNLL. On the contrary, for the Cambridge

algorithm, NNLL corrections are quite large, and the
NNLL uncertainty is larger than the NLL one, which in
turn seems to be underestimated. This effect can be
understood by observing that the NLL prediction for the
Cambridge algorithm does not contain any information
about multiple emission effects, since no clustering occurs
at this order and FNLL ¼ 1. These effects appear only at
NNLL, explaining the sizable numerical corrections. It
follows that the NLL theory uncertainty as estimated in
Fig. 1 is unable to capture large subleading effects.
A similar phenomenon was already observed in the
resummation for the jet-veto efficiency [38].
To conclude, in Fig. 2 we compare our NNLLþ NNLO

prediction to the data taken by the L3 Collaboration at
LEP2 [30] at Q ¼ 206 GeV. At this high center-of-mass
energy, the impact of hadronization effects, which are not
included in our calculation, is moderate. Overall, we find

1/
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dσ
/d
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FIG. 1. Differential distributions for the three-jet resolution in the Durham (left) and Cambridge (right) algorithms. The plots show
both the NLLþ NNLO (blue, solid band) and the NNLLþ NNLO (red, hatched band) results.
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FIG. 2. Comparison of NNLLþ NNLO predictions for the
two-jet rates to data from the L3 Collaboration [30].
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good agreement with data down to the lowest values of ycut.
Owing to the small residual perturbative uncertainties, our
calculation shows promise for a precise determination of
the strong coupling using eþe− data measured at LEP.
In this Letter, we have presented a general method for

final-state resummation at NNLL order for global rIRC safe
observables that vanish in the two-jet limit, where a single
family of large logarithms is resummed. We derived
explicit results for the two-jet rate in eþe−. The computer
code ARES used to obtain the results presented here can be
made available upon request to the authors.
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