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Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum
computing experiments, and measuring these error rates using randomized benchmarking is now routine.
However, direct comparison between measured error rates and thresholds is complicated by the fact that
benchmarking estimates average error rates while thresholds reflect worst-case behavior when a gate is
used as part of a large computation. These two measures of error can differ by orders of magnitude in the
regime of interest. Here we facilitate comparison between the experimentally accessible average error rates
and the worst-case quantities that arise in current threshold theorems by deriving relations between the two
for a variety of physical noise sources. Our results indicate that it is coherent errors that lead to an enormous
mismatch between average and worst case, and we quantify how well these errors must be controlled to
ensure fair comparison between average error probabilities and fault-tolerance thresholds.
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The fault-tolerance threshold theorem is a fundamental
result that justifies the tremendous interest in building
large-scale quantum computers despite the formidable
practical difficulties imposed by noise and imperfections.
This theorem gives a theoretical guarantee that quantum
computers can be built in principle if the noise strength and
correlation are below some threshold value [1–3].
To make precise statements of threshold theorems, we

must quantify the strength of errors in noisy quantum
operations. Ideally we would do this in terms of quantities
that can be measured in experiments. A standard measure
for quantifying errors in quantum gates is given by the
average error rate, which is defined as the infidelity
between the output of an ideal unitary gate U and a noisy
version EU with noise process E, uniformly averaged over
all pure states,

rðEÞ ¼ 1 −
Z

dψhψ jEðjψihψ jÞjψi: ð1Þ

This quantity has many virtues: it can be estimated
efficiently for any ideal gate U, and in a manner that is
independent of state preparation and measurement (SPAM)
errors by using the now-standard method of randomized
benchmarking [4–7]. Recent experimental implementations
include [8–17].
The major drawback of using Eq. (1) to quantify gate

errors is that it is only a proxy for the actual quantity of
interest, i.e., the fault-tolerance threshold. This is because r
captures average-case behavior for a single use of the gate,
while fault-tolerance theorems characterize noise in terms of
worst-case performancewhen the gate is used repeatedly in a
large computation. The importance of this distinction has
recently been emphasized by Sanders et al. [18], who gave

explicit examples of noise with a large discrepancy between
average- and worst-case error and showed that it is possible
for the worst-case error to scale like

ffiffiffi
r

p
. For some noise

types (such as pure dephasing and depolarizing noise), the
worst- and average-case behavior essentially coincide [19].
However, for other classes of errors, notably for exper-
imentally relevant errors in detuning and calibration that
lead to over- or under-rotation, the worst-case behavior can
be orders ofmagnitudeworse than the average in the relevant
regime of r ≪ 1. Thus, it is not possible to directly compare
a measured value of r to a threshold result. Despite this,
experimentalists are increasingly wishing to relate the
results of benchmarking experiments to fault-tolerance
thresholds. There is, thus, a pressing need for techniques
that allow for direct comparison between experimentally
measurable error rates and fault-tolerance thresholds.
In this Letter, we investigate the relationship between

worst-case and average-case error for a wide range of error
models that are relevant to experiments. First, we show
that while closed -form expressions do not typically exist,
well-established theoretical techniques of convex optimi-
zation are often sufficient to determine the relationship
between average-case and worst-case errors for models of
physical interest. The details of these computations are
largely relegated to the Supplemental Material [20].
Second, we study a wide range of error models for
1-qubit gates. Our main example is of a 1-qubit gate
with combined dephasing and calibration error. This
allows us to demonstrate the crossover between a regime
dominated by dephasing, where average-case and worst-
case errors are not too different, and the limit of a unitary
noise, where the worst-case error scales like

ffiffiffi
r

p
. We then

turn to general bounds on worst-case error, showing that it
scales as

ffiffiffi
r

p
for all unitary errors and that for a wide class
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of errors it can be accurately estimated in terms of r and a
recently introduced measure of how close an error process
is to being unitary. Finally, conventional benchmarking
experiments contain a lot more information than is
required just to extract r. We find that this information
can often be used to show that the worst-case error has an
unfavorable scaling. This is an area that we hope will
attract much more study in future.
Fault-tolerance thresholds.—A wide range of fault-

tolerance thresholds have been reported. The value of
the threshold depends greatly on the fault-tolerant proce-
dures that are used, on the noise model that is assumed,
and whether the threshold is determined from (possibly
conservative) analytic bounds on the error, or from
(possibly optimistic) numerical simulations. We emphasize
that the errors that are given in theoretical fault-tolerance
papers typically refer to some measure of worst-case error.
For example, the widely known results of Aliferis and
collaborators [26–28] use concatenated error-correcting
codes and consider a stochastic adversarial noise model
that includes all of the noise processes that we will discuss
in this Letter. These papers find that large-scale quantum
computation can be performed for errors below a few
times 10−4, when that error is quantified by a measure of
worst-case error such as the diamond distance that we
discuss below. For more optimistic noise models and for
fault-tolerant protocols such as the widely known surface
code approaches, the threshold is around 10−2 based on
numerical simulations of Pauli errors [29]. For Pauli noise,
however, there is no significant difference between worst-
case and average-case errors [19]. The performance of
these schemes in the presence of coherent errors is not yet
understood.
It is possible to state a version of the threshold theorem

directly in terms of r, but given current knowledge the
thresholds in these theorems would be roughly the square of
current thresholds (around 10−8 for [26–28]). It is unclear if
this can be significantly improved upon, because it may be
that it is theworst-case error that is physically relevant to the
success of the computation. However, our results here
motivate research into whether current fault-tolerance
results could be strengthened to provide significantly
improved thresholds when expressed in terms of r for error
models sufficiently general to include coherent errors.
Diamond distance.—We will now describe the most

commonly used metric of worst-case error for quantum
processes. Any candidate measure of distance ΔðE;F Þ
between noise operations E and F should satisfy certain
desirable properties [30]. (The operation F should be
thought of as a perfect identity gate for our purposes.)
First, like any good distance measure, it should have the
structure of a metric, which in particular means it should be
symmetric, positive, and obey the triangle inequality. Less
obviously, but even more importantly, it should obey two
additional properties: chaining and stability. The chaining
property,

ΔðE2E1;F 2F 1Þ ≤ ΔðE1;F 1Þ þ ΔðE2;F 2Þ; ð2Þ

says that composing two noisy operations cannot amplify
the error by more than the sum of the two individual errors.
Thus, errors can grow at most linearly in the number of
operations. The stability property states that the error metric
for a single gate should be independent of whether that gate
is embedded in a larger computation. Thus, we require

ΔðI ⊗ E; I ⊗ F Þ ¼ ΔðE;F Þ; ð3Þ
where I is the identity operation. This ensures that our
measure is robust even if the input to the gate is entangled
with other qubits in the computation.
The diamond distance, whose formal definition is

DðE;F Þ ¼ 1

2
max
ρ

∥I ⊗ F ðρÞ − I ⊗ EðρÞ∥1; ð4Þ

satisfies each of these physically motivated desiderata [1].
It also has an appealing operational interpretation as the
maximum probability of distinguishing the output of the
noisy gate from the ideal output [1,31]. It is not obvious
from the definition how to do practical computations with
this quantity, but it can be computed efficiently using the
methods of semidefinite programming [32–34]. Because of
these properties, the diamond distance is an ideal measure
for quantifying noise for the purposes of a fault-tolerance
threshold, although in principle other quantities could be
employed as well [2].
The only drawback of this quantity is that it is not known

how to measure it directly in experiments. It is therefore of
interest to have a conversion to, or at least bounds for,
diamonddistance in terms of the averagegate fidelity. Todate,
the best-known bounds for a d-level quantum gate are [35]

dþ 1

d
r ≤ D ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdþ 1Þr

p
;

but it is unknown for what conditions these bounds are tight.
Single-qubit calibration and dephasing errors.—In order

to discuss the relationship between average-case and worst-
case errors in quantum computing demonstration experi-
ments, wewill now analyze in detail a simple but physically
relevant noise model for a single-qubit gate. Suppose that
the gate is implemented by the noisy control Hamiltonian
Hc ¼ JðtÞσz. Because of experimental imperfections, the
control JðtÞ that is implemented is distinct from the
nominal control J0ðtÞ that would perfectly implement
the required gate. Physically, this noise results in two
distinct types of errors: dephasing, where δJðtÞ ¼ J − J0
varies stochastically between uses of the gate, and cali-
bration error, where δJ takes the same fixed value each time
the gate is used. Where δJðtÞ is stochastically varying, we
assume that the noise level does not change with time, and
that the noise spectrum for δJðtÞ is mainly confined to
frequencies f > 1=tg, where tg is the time required to
perform the gate. When averaged over uses of the gate, the
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resulting noisy operation is EU, where U is the desired gate
and the noise process amounts to

EðρÞ ¼ pσze−iδσzρeiδσzσz þ ð1 − pÞe−iδσzρeiδσz : ð5Þ

In this noise model, the dephasing noise rate p arises from
the time-varying noise on the gate, while the unitary over
rotation δ results from the fixed miscalibration of the
control pulse JðtÞ. [Although we speak here in terms of
calibration errors, this also approximately captures the
effects of highly non-Markovian errors arising from very
low-frequency noise in JðtÞ.]
This noise model roughly captures many experimental

gates, but more importantly it will demonstrate the range of
behaviors that can be expected in terms of the relationship
between average-case and worst-case error. Specifically,
when δ ¼ 0 we have a pure dephasing process. For such
errors [19] the worst-case error scales like r, so this is the
most favorable possible behavior. On the other hand, for
p ¼ 0 we have a purely unitary rotation error that has the
worst possible behavior, where the worst-case error scales
like

ffiffiffi
r

p
.

Usingwell-known techniques [36,37]we find the average
error rate for this calibration and dephasing (CD) noise to be
rCD ¼ 2

3
ðp cosð2δÞ þ sin2 δÞ. Employing the semidefinite

programming approach of Refs. [19,32], we can evaluate the
diamond distance for this noise channel and find

DCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rCD − pð1 − pÞ

q
. A logarithmic plot of the ratio

DCD=rCD is shown in Fig. 1.

In the interesting regime of low error we find
rCD ≃ 2ðpþ δ2Þ=3, while DCD ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ δ2
p

. From this,
we can see that when p ≫ jδj we have DCD ≃ 3rCD=2,
as for a pure dephasing process, and there is no great
difference between worst-case and average-case errors.
However, as the calibration error grows, the worst-case
error grows significantly. When calibration error domi-
nates, jδj ≫ p, we find DCD ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3rCD=2
p

. In this regime,
an average error rate rCD of around 10−4 corresponds to a
worst-case error of more than one percent. Physically, then,
we see that as dephasing error is reduced in a particular
experimental setting, this places more stringent demands on
the calibration required if the average error rate r is to be
compared directly to a fault-tolerance threshold.
Single-qubit relaxation errors.—Another natural single-

qubit noise process to consider is qubit relaxation or
amplitude damping errors [spontaneous emission or a T1

process in nuclear magnetic resonance (NMR) language],
at finite temperature. In this process a qubit with energy
splitting E is coupled to a bath at temperature T. Define as
in [38] the probability for a decay process during the action
of the gate is γp and the probability to go from the ground
to the excited state is γð1 − pÞ. The ratio of upgoing to
downgoing transition rates p=ð1 − pÞ ¼ expð−E=kBTÞ is
the Boltzmann factor, which allows us to identify p ¼ 1=2
as infinite temperature and p ¼ 1 as zero temperature. For
this amplitude damping (AD) noise channel we find
rAD ¼ ð1 − ffiffiffiffiffiffiffiffiffiffi

1 − γ
p þ γ=2Þ=3. Although we have no

closed-form expression for the worst-case error for these
channels, we have adapted standard techniques in the
analysis of semidefinite programs to find the bound
DAD ≤ 3rAD maxfp; 1 − pg. Therefore, we have a guar-
antee that the average-case and worst-case errors are not too
different. Comparing with a direct evaluation of the semi-
definite program, we findDAD ≃ 3rAD for zero temperature
(p ¼ 1) and low noise rAD ≪ 1, so this is the tightest
bound possible. In the limit of high temperature p → 1=2
we approach a dephasing channel and recover the formula
DAD ¼ 3rAD=2. This behavior is illustrated in Fig. 2.
Leakage errors.—Another important class of errors

encountered in experiment is leakage errors. Modified
randomized benchmarking protocols for leakage errors
are proposed in [39,40]. In Ref. [39] it was shown that a
nearly trivial modification of a standard benchmarking
protocol in the presence of leakage errors can still be used
to determine the average error rate r, so we again use this
figure of merit for comparison. For a leakage model we
need to consider a larger space of states, so we add a
leakage level jli to the two 1-qubit states j0i; j1i. We follow
[40] in distinguishing coherent and incoherent leakage
errors and compare the average-case error to the true worst-
case error; this will be the diamond distance on the full state
space including both the leakage and qubit states. Fault-
tolerance theorems also exist for leakage error processes
[41], and this is the appropriate noise measure to compare
with the numerical values found in those papers.

−5 −4 −3 −2 −1
−5

−4

−3

−2

−1

log10p

lo
g 1

0

log10D/r

0.18

2.16

FIG. 1. Average error rate r and worst-case error rate (diamond
distance) D for a combination of dephasing and unitary errors.
The logarithmic plot is of D=r, which quantifies how much
greater the worst-case error is than the average case as a function
of a unitary over rotation angle δ and a dephasing probability p,
where the exact noise process is given in Eq. (5). When p ≥ δ, D
and r are comparable to within a small factor, but as soon as
δ > p, D rapidly becomes much greater than r.
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As an example of incoherent leakage (IL), we
will consider the case where the qubit state j1i relaxes to
jli with probability p. A benchmarking experiment
(following [39]) then obtains the average-case error
rIL ¼ ½1 − ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p þ p�=3, where this is now the infidelity

averaged over states initially in the qubit subspace. Because
this process is so similar to the amplitude damping channel,
we can use analogous techniques to find the inequality
DIL ≤ 2rIL. Thus, for this error process the average-case
and worst-case error again almost coincide.
As an example of coherent leakage (CL), consider the

unitary noise process ECLðρÞ ¼ UðδÞρUðδÞ† given by
UðδÞ ¼ exp½−iδðj1ihlj þ jlih1jÞ�. For this noise process
one obtains rCL ¼ ½1 − cos δ − cos2 δ�=3. However, as for
the unitary errors discussed above, the worst-case error can
be much larger than this. We find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rCL=2

p
≤ DCL ¼

j sin δj ≤ ffiffiffiffiffiffiffiffiffi
2rCL

p
for all δ ∈ ½−π=2; π=2� and, consequently,

the worst-case error scales like
ffiffiffiffiffiffiffi
rCL

p
. Where leakage errors

are possible, it would be important to use the methods of
[40], or some other method to bound coherent leakage
errors, before comparing the average-case error r to a fault-
tolerance threshold.
Unitary errors.—In looking at these examples we have

found that unitary or nearly unitary errors appear to result in
the largest difference between average-case and worst-case
errors. This is true in general. For unitary errors in a
d-dimensional space we find the following inequalities:

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

d

r ffiffiffiffiffi
rU

p
≤ DU ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þd

p ffiffiffiffiffi
rU

p
:

Thus, any unitary error has a worst-case error scaling
like

ffiffiffiffiffi
rU

p
.

A general inequality.—For a large and important class of
noise processes, the worst-case error can be directly
estimated from benchmarking-type data without side infor-
mation about the type of error, which generally requires
doing full quantum process tomography [42], or one of its
SPAM-resistant variants [43,44]. In Ref. [45] a quantity
called the unitarity uðEÞ of a noise process E was defined
(see the Supplemental Material [20] for a precise defini-
tion), and it was shown that this can be estimated efficiently
and accurately using benchmarking. We find that for all
unital noise (i.e., noise where the maximally mixed state is
a fixed point) with no leakage, the unitarity and the average
error rate together give a characterization of the worst-case
error via the inequality [46]

cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ 2dr

d − 1
− 1

r
≤ D ≤ d2cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ 2dr

d − 1
− 1

r
; ð6Þ

where cd ¼ 1
2
ð1 − 1=d2Þ1=2. Since the unitarity generally

obeys the inequality u ≥ ½1 − dr=ðd − 1Þ�2 (see Ref. [45])
we find (for unital noise without leakage) that the worst-
case error scaling matches the average case if and only
if u ¼ 1 − 2dr=ðd − 1Þ þOðr2Þ.
To illustrate the power of inequality (6), we immediately

find that for the single-qubit calibration and dephasing
noise model, the condition 1 − uCD ¼ 4rCD þOðr2CDÞ is
both necessary and sufficient to recover the favorable
linear scaling between the worst- and average-case
errors. In fact, the worst-case error for this channel
can be expressed directly in terms of the unitarity as

DCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rCD − 3

8
ð1 − uCDÞ

q
. Also, because the unitarity

can be estimated from a benchmarking-type experiment,
this gives direct experimental access to worst-case errors
for this family of noise models without the need for
expensive tomographic methods.
Moreover, inequality (6) allows us to obtain insights into

generalizing our conclusions for single-qubit models to
few-qubit systems such as those required for entangling
quantum gates. A natural generalization of our CD model
to 2-qubit calibration and dephasing errors would be an
independent dephasing rate p on each qubit and unitary

noise given by eiHCD2 where HCD2 ¼ δ1σ
ð1Þ
z þ δ2σ

ð2Þ
z þ

ϵσð1Þz σð2Þz . The semidefinite programming approach is pos-
sible here, but becomes unwieldy because there are so
many free parameters. However, both the average error rate
and the unitarity are readily computed as in the
Supplemental Material [20]. Inequality (6) then allows
one to easily and generally explore the tradeoffs in the
calibration accuracy of the δ and ϵ parameters such that
the overall error remains roughly consistent between the
average and worst cases. Furthermore, since uCD2 can be
measured efficiently in a benchmarking experiment, large
values of u can be used to herald that an experiment has left
the favorable scaling regime and more characterization and
calibration must be done.

p

0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5
r

0.2

0.4

0.6

0.8

1.0

D

FIG. 2. Tradeoff between average error rate r and the worst-
case error rate in terms of the diamond distance D for the thermal
amplitude damping channel, where the parameter p controls the
temperature with p ¼ 1 corresponding to zero temperature and
p ¼ 1=2 corresponding to infinite temperature. The dashed line is
the previous best upper bound [35], while the upper black line is
the new bound derived here. The zero-temperature limit (p ¼ 1)
gives the least-favorable scaling ofD with r, but in every case the
bound D ≤ 3r holds. The infinite-temperature limit (p ¼ 1=2)
recovers the known value of D ¼ 1.5r.
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Conclusion and outlook.—We have seen that many
realistic noise processes admit a linear relation between
the average error rate (which is accessible experimentally)
and the worst-case error (which is the relevant figure of
merit for fault tolerance). The exceptions to this rule are
highly coherent errors, where the worst-case error scales
proportionally to the square root of the average error rate.
While our methods and results are very general, there are

noise sources that we have not tried to fit into our error
taxonomy. However, errors such as cross talk [48] and time-
dependent or non-Markovian noise [49,50] should be
amenable to these methods, and extending our results to
cover such noise is an important avenue for future work.
Finally, we reiterate that it is an interesting open question

whether it is possible to prove a fault-tolerance threshold
result directly in terms of r without the lossy conversion to
D. Fault-tolerant circuits are not perfectly coherent because
measuring error syndromes necessarily removes certain
coherences, and this may provide an avenue to develop
stronger theorems.
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