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It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization
hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems
that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that
such systems satisfy a modified version of the ETH ansatz and derive a general connection between the
scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of
the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the
variance scales more slowly with system size than expected for diffusive systems. We corroborate our
findings by numerically studying the distribution of the coefficients of the eigenfunctions and the
off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous
transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the
eigenfunctions, thus, directly violating Berry’s conjecture.
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Recently, the long-standing question of thermalization in
closed quantum systems [1] has regained importance due to
advances in cold atoms experiments [2], as well as the
theoretical prediction of a dynamical phase transition,
known as the many-body localization (MBL) transition
between ergodic and nonergodic phases [3–7].
Thermalization in classical systems is normally associated
with their underlying ergodicity, a property which is one of
the basic assumptions of statistical mechanics. The sit-
uation for quantum systems is more delicate, since the
evolution of any eigenstate amounts to a time dependent
global phase (see recent reviews [8–10]). Major progress
was achieved by Berry who conjectured [11] that the
coefficients of high energy eigenstates of a quantum system
in a generic basis corresponding to a chaotic classical
system are independent Gaussian variables, similar to the
distribution of the eigenstates in the corresponding random
matrix ensemble [12]. The connection between random
matrix theory and realistic systems was made in Deutsch’s
seminal paper [13], showing that perturbing the
Hamiltonian with a random matrix leads to thermalization.
Later, it was shown by Srednicki that, for a gas of hard core
particles, if Berry’s conjecture is satisfied, the distribution
of the velocities of the particles approaches the Maxwell-
Boltzmann distribution for large systems. Therefore, it was
concluded that the validity of Berry’s conjecture is required
for thermalization in quantum systems [14]. Building on
this intuition, and the analogy to random-matrix theory,
Srednicki proposed that an ergodic isolated quantum
system should satisfy the eigenstate thermalization hypoth-
esis (ETH) anzatz [15]

hαjÔjβi ¼ OðEÞδαβ þ e−SðEÞ=2fðE;ωÞRαβ; ð1Þ

where α, β are the eigenstates, Ô is a generic operator, SðEÞ
is the microcanonical entropy, OðEÞ, fðE;ωÞ are smooth
functions of their arguments, E ¼ ðEα þ EβÞ=2, and
ω ¼ Eβ − Eα. Here, the normal distribution with zero mean
and unit variance of the random term Rαβ is justified
through Berry’s conjecture. The first, diagonal term in the
ETH ansatz is equal to the microcanonical expectation
value of the corresponding observable, thus, representing a
static thermodynamic quantity. This relation was numeri-
cally verified by Rigol et al. for certain generic quantum
systems [16]. The exponential decay with system size of the
second term, as well as the validity of the Gaussian
distribution of the noise ðRαβÞ, was subsequently verified
for a number of generic quantum systems [17–24]. In the
present work, we show that there is a class of ergodic
systems which exhibit anomalous (nondiffusive) relaxation
to equilibrium while still satisfying a modified ETH ansatz,
such that the off-diagonal elements in (1) include a power
law correction to their scaling with the system size.
To characterize the approach to equilibrium, we follow
the derivations in Refs. [25,26], and [9] (Sec. VI.8), and use
the correlator

CαðtÞ ¼ hαjÔðtÞÔð0Þjαi ¼
X
β≠α

jhαjÔjβij2eiðEα−EβÞt; ð2Þ

where jαi, jβi are eigenstates, and in the last step, we have
subtracted the element β ¼ α (assuming a generic system
with no degeneracy), to have a correlator with a vanishing
infinite time average. Using (1), we have

CαðtÞ ¼
X
β≠α

e−SðEαþω=2Þ
����f
�
Eα þ

ω

2
;ω

�����
2

jRαβj2e−iωt: ð3Þ
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For further simplification, we replace the sum over
eigenstates by an integral over the density of states, which
we write as eSðEÞ

X
β≠α

→
Z

dEβeSðEβÞ ¼
Z

dωeSðEαþωÞ: ð4Þ

The Fourier transform to frequency space yields

CαðωÞ ¼ 2π exp

�
SðEα þ ωÞ − S

�
Eα þ

ω

2

��

×

����f
�
Eα þ

ω

2
;ω

�����
2

jREα;Eαþωj2: ð5Þ

Assuming that SðEÞ and fðE;ωÞ are smooth functions of
energy and frequency, we can expand

SðEα þ ωÞ − S

�
Eα þ

ω

2

�
¼ ∂S

∂Eω −
∂S
∂E

ω

2
¼ ω

2T
þOðω2Þ;

ð6Þ

where we used ∂S=∂E ¼ 1=T, where T is the micro-
canonical temperature, and we set the Boltzmann constant
to one. Expanding the other term gives

f

�
Eα þ

ω

2
;ω

�
¼ fðEα;ωÞ þ

ω

2

∂fðE;ωÞ
∂E

����
E¼Eα

þOðω2Þ:

ð7Þ

Therefore, to the leading order in ω, we get

CαðωÞ ¼ 2πeω=ð2TÞ
�
jfðEα;ωÞj2 þ

ω

2

∂jfðE;ωÞj2
∂E

����
E¼Eα

�
:

ð8Þ

For a Hermitian operator, Ô we have fðEα;ωÞ ¼
fðEα;−ωÞ, yielding

jfðEα;ωÞj2 ¼
1

4π
½e−ω=ð2TÞCαðωÞ þ eω=ð2TÞCαð−ωÞ�: ð9Þ

In the limit of small frequencies ω=T → 0, we have

jfðEα;ωÞj2 ¼
Z

∞

−∞
dthαjfÔðtÞ; Ôð0Þgjαieiωt; ð10Þ

where f:; :g is an anticommutator. We now assume that
ÔðtÞ is a conserved quantity which exhibits anomalous
transport

hΨjfÔðtÞ; Ôð0ÞgjΨi≍t−γ: ð11Þ
Such a decay of the correlation function jfðEα;ωÞj2 is
given by

jfðEα;ωÞj2 ∝
Z

∞

−∞
dtjtj−γeiωt ∝ jωj−ð1−γÞ: ð12Þ

For a finite system of size L, saturation will occur after time
tc ≈ L1=γ, analogous to the Thouless time [27]. This follows
from the relation between the return probability exponent γ,
and the mean-square displacement exponent, which is
valid for one dimensional systems [28]. Therefore, the
power-law dependence will be cut off for frequencies, ω <
t−1c ¼ L−1=γ , and jfðEα;ωÞj2 will become structureless [9]

jfðEα;ωÞj2 ≈ t1−γc ¼ Lð1−γÞ=γ; ω < L−1=γ: ð13Þ

Then, the off-diagonal elements should scale with system
size as

Oαβ ∝ e−LsðEÞ=2Lð1−γÞ=ð2γÞRαβ; jEα−Eβj<L−1=γ; ð14Þ

where we write the microcanonical entropy density as
sðEÞ ¼ SðEÞ=L, to make the dependence on system size
explicit. Note that we keep the general form of the ETH
ansatz and assume that the distribution of the random
numbers Rαβ has zero mean and unit variance. The scaling
with system size of the standard deviation (std) of the off-
diagonal matrix elements after the dominant exponential
factor has been removed is, therefore, given by

stdðOαβeLsðEÞ=2Þ≍Lδ; jEα − Eβj < L−1=γ; ð15Þ

where, δ≡ ð1 − γÞ=ð2γÞ. A special case of this relation was
established in Ref. [9] for diffusive one-dimensional
systems, where δ ¼ 1=2 and γ ¼ 1=2. We note, in passing,
that the scaling of hjOαβj2i with system size was computed
in Ref. [21] for generic clean systems and in Ref. [29] for a
generic disordered system. In both works, departure from
exponential dependence on system size is observed when ω
is taken to be small. Our results suggest that the cause of
this discrepancy is the logarithmic correction resulting
from (15).
To show that (14) holds for systems with anomalous

transport, we numerically study the spin-1
2
Heisenberg chain

in a random magnetic field

Ĥ ¼ J
X
i

~Si · ~Siþ1 þ
X
i

hiŜ
z
i ; ð16Þ

where J is the spin-spin coupling, which we will set to 1,
and hi ∈ ½−W;W� are random fields drawn from a uniform
distribution. Previous studies [24,30–36], have established
that the ergodic phase of this model is characterized by
anomalous transport with a continuously varying dynami-
cal exponent γðWÞ≲ 1=2, as a function of the disorder
strengthW. The dynamical exponent vanishes at the many-
body localization transition, as the system no longer
thermalizes in the MBL phase. In general, exact numerical
studies of high energy many-body eigenstates are a
formidable task, and full diagonalization becomes very
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expensive for systems of size L≳ 18. Since we strive to
access systems that are as large as possible, we use the
shift-invert technique, which transforms the spectrum of
the Hamiltonian such that the states of interest are moved to
the lowest (highest) energies in the transformed spectrum
and become tractable by Krylov space methods. The most
commonly used spectral transformation for this purpose is
ðH − σIÞ−1, where the explicit inversion of the shifted
Hamiltonian can be avoided and replaced by a repeated
solution of a set of linear equations. We use the massively
parallel MUMPS library [37,38] for this purpose and are able
to obtain exact midspectrum eigenstates for system sizes
up to L ¼ 22. For all system sizes, we calculate a fixed
number k ¼ 50 of eigenstates and eigenvalues in the
middle of the spectrum. For these energy densities, the
transition to the MBL phase occurs at a critical disorder
strength ofWc ≈ 3.7 [39]. In what follows, wewill focus on
the limit of small disorder, W < Wc, where the system is
ergodic and the diagonal elements of local operators were
shown to satisfy the ETH, although with non-Gaussian
distributions [24]. We will show that the off-diagonal
elements satisfy our scaling prediction (14). Since the
many-body density of states scales exponentially with
the system size, for a fixed number of states around some
energy, the assumption on the energy difference, ω ¼ Eα−
Eβ ¼ k exp ð−LsðEÞÞ < L−1=γ, in (14) is always satisfied
for sufficiently large systems.
For every pair jαi, jβi of these eigenstates with α ≠ β, we

calculate the matrix elements hαjŜzi jβi of the local Ŝzi
operator for all sites i in the chain using periodic boundary
conditions. In the left column of Fig. 1, we present the
probability distribution of the off-diagonal elements com-
puted for different disorder strengths and system sizes, the
right panel shows the same distributions, renormalized by
their standard deviation σ, in order to compare the shapes
of the distributions across system sizes. This normalization
procedure allows us to directly extract Rαβ, since the
resulting distribution has a unit variance. The shape of
the rescaled distribution is Gaussian deep in the ergodic
phase (for weak disorder) and, thus, corresponds to the
general expectation of the ETH ansatz [18,21]. Closer to
the MBL transition, the shape of the distribution is clearly
non-Gaussian, which hints on the violation of the Berry’s
conjecture. To directly test the validity of Berry’s con-
jecture, we calculate the distribution of the coefficients
hijαi of the eigenfunctions jαi in the spin basis jii in Fig. 2.
Surprisingly, even for the smallest disorder we study
(W ¼ 0.4), Berry’s conjecture is clearly violated.
To verify that the exponent obtained from rescaling

according to (14) is, indeed, linked to the dynamical
exponent γ, we study the behavior of the correlation function
hψ jfŜzi ðtÞ; Ŝzigjψi. As it is very difficult for large systems to
obtain high energy eigenstates, we use random states with
an average energy density of ϵ ¼ 0.5, corresponding to the
energy hψ jHjψi ¼ E1

2
≔ ðEmax þ EminÞ=2 and a small

variance of the energy ðhH2i − hHi2Þ=hHi2 ≪ 1. We gen-
erate such typical high energy states starting from a random
state jψ0i and using the power method for the folded
Hamiltonian ðH − E1

2
Þ2 to iteratively reduce the uncertainty

in the energy around E1
2
. Typically, a few hundred iterations

suffice to reduce the standard deviation of the energy to a few
percent of the bandwidth. We then use the resulting energy
squeezed states in the calculation of the correlation function,
which is obtained using exact time evolution by a Krylov
space method [32,34,40]. After a short time transient, this
function decays as a power law superposed by oscillations as
observed in previous studies for similar quantities
[30–32,41]. We find that the most reliable way of extracting
the dynamical exponent γ is by using open boundary
conditions and studying the correlation function on one of
the boundaries. This yields the same result as the bulk, but the
effect of the other boundary is delayed compared to other
setups, which gives access to longer times for which bulk
transport is observed. For smaller system sizes, we have
verified that using the eigenstates as the initial condition jψi
points to similar results. To reliably extract the dynamical
exponent γ, it is also crucial to fit the transient behaviorwhich
includes decaying oscillations superimposed onto the power
law decay. For this purpose, we use the ansatz proposed in
Ref. [32]

FIG. 1. Left column: Distribution of the off-diagonal elements
(α ≠ β) of the operator Ŝzi , written in the eigenstate basis of the
Hamiltonian (16), for different disorder strengths, W ¼ 0.4 and
2.0 and system sizes, L ∈ ½12; 22�. Darker tones correspond to
lager system sizes. The eigenstates correspond to 50 closest
eigenvalues to the middle of the many-body spectrum and the
distributions have been sampled from roughly 1000 disorder
realizations, except for L ¼ 22, where we only used 100
realizations. Right column: Distributions rescaled to have a unit
variance. At W ¼ 0.4 the distribution is very close to Gaussian
(dashed line).
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CðtÞ ¼ ae−t=τ cos ðω1tþ ϕÞ
þ bt−γ½1þ ct−η sin ðω2tþ ϕÞ�; ð17Þ

yielding excellent fits. In Fig. 3, we present the dynamical
exponent γ calculated from (17), together with the exponent
γ, obtained from the exponent δ [see (15)]. The left panel of
Fig. 3 shows the lhs of Eq. (15) as a function of system size
for various disorder strengths on a log-log scale, demon-
strating that it, indeed, follows a power law. Here, we have
estimated the density of states eS from the energy interval, in
which we find k eigenvalues. Note that, approaching the
MBL transition, visible deviations from power law behavior
appear, signaling the violation of the scaling (14). However,
sufficiently far from the MBL transition, the agreement of
the two exponents is remarkable. Surprisingly, while Berry’s
conjecture is violated, the excellent collapse between the
two exponents as predicted by (14) suggests that the ETH
anzatz (1) still applies, just with non-Gaussian fluctuations
andwith amodified scaling of the off-diagonal elementswith
the system size.
In summary, we have shown that there are systems which

are thermal and exhibit anomalous transport of conserved
quantities, but still satisfy the ETH, though in a modified
form. We have derived the dependence of the standard
deviation of off-diagonal matrix elements of local operators
(written in the basis of the eigenstates of the Hamiltonian)

on the system size for systems with both normal and
anomalous transport. This dependence includes power law
corrections to the customary exponential ETH term. We
have derived a scaling relation between the exponent δ of
this power law, and the dynamical transport exponent γ and
thoroughly tested the validity of this scaling using extensive
numerical calculations on the random field Heisenberg
model in its thermal phase. The scaling relation works
perfectly for low to indeterminate disorder strengths suffi-
ciently far from the MBL transition. Our numerical results
also show that the distributions of the off-diagonal matrix
elements are Gaussian at weak disorder, where the dynam-
ics is roughly diffusive and becomes strongly non-Gaussian
for stronger disorder when the system becomes subdiffu-
sive. These pathological distributions are accompanied by a
violation of Berry’s conjecture, as the distributions of the
wave function coefficients deviate strongly from Gaussian
distributions. It would be interesting to explore the possible
connection between anomalous transport and the violation
of Berry’s conjecture in future works. In our analysis, we
have relied only on the second moment of the distributions
of off-diagonal matrix elements, thus, ignoring additional
information encoded in its shape, which will show up in the
relation between their moments. A number of previous
studies discussed the existence of an intermediate phase
with multifractal eigenstates [39,42–47] and multifractal
off-diagonal matrix elements of local operators [48]. While
the non-Gaussian form of the obtained distributions is
consistent with these studies, we leave the detailed explo-
ration of this connection to a subsequent work.
Since the exponential dependence on the system size of

the off-diagonal elements stems from the randomness
assumption of the eigenfunction coefficients, we speculate
that the derived power law corrections follow from residual
correlations between these coefficients induced by the
conservation laws of the underlying system. Therefore, it
would be interesting to see how the obtained corrections are

FIG. 2. Left column: Distributions of the eigenfunction ele-
ments in the basis of the local magnetization for small (W ¼ 0.4,
top) and intermediate (W ¼ 1.6, bottom) disorder strengths for
various system sizes. Right column: Same distribution as in the
left column, rescaled such that the variance is equal to one.
Darker tones correspond to larger system sizes. Clearly, the
distribution differs strongly from a Gaussian distribution at
intermediate disorder. At weak disorder, the difference from
Gaussian (dashed line) is visible mostly in the tails and the excess
of weight at zero.

FIG. 3. Left panel: Extraction of the exponent from the scaling
relation (14) for various disorder strengths after the dominant
exponential scaling term was eliminated. Right panel: Exponent
extracted from the scaling relation (black circles) versus direct
computation of the dynamical exponent γ from the correlation
function using energy squeezed states.
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affected by the number of conserved quantities in the
system, a question which we leave for future studies.
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