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We use trapped atomic ions forming a hybrid Coulomb crystal and exploit its phonons to study an
isolated quantum system composed of a single spin coupled to an engineered bosonic environment. We
increase the complexity of the system by adding ions and controlling coherent couplings and, thereby, we
observe the emergence of thermalization: Time averages of spin observables approach microcanonical
averages while related fluctuations decay. Our platform features precise control of system size, coupling
strength, and isolation from the external world to explore the dynamics of equilibration and thermalization.
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How does statistical mechanics emerge from the micro-
scopic laws of nature? Consider, for example, a finite,
isolated quantum system: It features a discrete spectrum
and a quantized phase space, its dynamics are governed by
the linear Schrödinger equation and, thus, remain reversible
at all times. Can such a system equilibrate or even thermal-
ize? Progress in the theory of nonequilibrium dynamics and
statistical mechanics sheds light on these fundamental
questions. It has been shown that individual quantum states
can exhibit properties of thermodynamics depending on
entanglement within the system [1–7]. While the entire
system may very well be described by a pure state, any
small subsystem and related local observables may be found
in amixed state due to disregarded entanglementwith the rest
of the isolated system, i.e., the large environment. Further, it
is predicted that even any individualmany-body eigenstate of
a nonintegrable Hamiltonian yields expectation values for
few-body observables that are indistinguishable frommicro-
canonical averages [8–13]. This conjecture has been exten-
sively studied by numerical simulations of specific quantum
many-body systems of moderate size, exploiting available
computational power [14–17]. Recently, there have been first
experiments in the context of thermalization in closed
quantum systems with ultracold atoms [18–20]. However,
fundamental questions on the underlying microscopic
dynamics of thermalization and its time scales remain
unsettled [12,21,22].
Trapped-ion systems are well suited to study quantum

dynamics at a fundamental level, featuring unique control
in preparation, manipulation, and detection of electronic
and motional degrees of freedom [23–29]. Their Coulomb
interaction of long range permits tuning from weak to
strong coupling [30]. Additionally, systems can be scaled
bottom up to the mesoscopic size of interest to investigate
many-body physics [31–34].
In this Letter, we study linear chains of up to five trapped

ions using two different isotopes of magnesium to realize a
single spin with tunable coupling to a resizable bosonic
environment. Time averages of spin observables become

indistinguishable from microcanonical ensemble averages,
and amplitudes of time fluctuations decay as the effective
system size is increased. We observe the emergence of
statistical mechanics in a near-perfectly-isolated quantum
system, despite its seemingly small size.
The dynamics of our system are governed by the

Hamiltonian [35,36]

H¼ℏωz

2
σzþ

ℏΩ
2
σxþ

XN
j¼1

ℏωja
†
jajþ

ℏΩ
2
ðσþCþσ−C†Þ: ð1Þ

The spin is described by Pauli operators σlðl ¼ x; y; zÞ and
ℏ denotes the reduced Planck constant. The first term can
be interpreted as interaction of the spin with an effective
magnetic field ωz, lifting degeneracy of the eigenstates of
σz, labeled j↓i and j↑i, while the second drives oscillations
between these states with spin coupling rate Ω. The sum
represents the environment composed of N harmonic
oscillators with incommensurate frequencies ωj, and the
operators aj ða†jÞ annihilate (create) excitations, i.e.,
phonons, of mode j. The last term describes spin-phonon
coupling via spin flips, σ� ≡ ðσx � iσyÞ=2, accompanied
by motional (de)excitation, which is incorporated in

C ¼ exp

�
i
XN
j¼1

ηjða†j þ ajÞ
�
− 1; ð2Þ

at a strength tunable by Ω and the spin-phonon coupling
parameters ηj ∝ 1= ffiffiffiffiffi

ωj
p . Expanding C in series permits

restricting to linear terms for values ηj ≪ 1 (weak cou-
pling). For ηj ≈ 1, as in our experiment, higher order terms
become significant (strong coupling), allowing the system
to explore the full many-body set of highly entangled spin-
phonon states. This regime is well described by full exact
diagonalization (ED) only, since the discrete nature of the
bosonic environment of finite size hinders standard approx-
imations applicable to the spin-boson model considering a
continuous spectral density [36,47].
To study nonequilibrium dynamics of expectation

values hσlðtÞiðl ¼ x; y; zÞ, consider an initial product state
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ρðt ¼ 0Þ≡ ρð0Þ ¼ ρSð0Þ ⊗ ρEð0Þ, where the spin is in a
pure excited state and the bosonic modes are cooled close
to their motional ground states (average occupation
n̄j¼1;…;N ≲ 1). With this, we ensure that energies of spin
and phonons remain comparable to enable the observation
of the coherent quantum nature of the dynamics which
creates entanglement of spin and phonon degrees of free-
dom. Because of the coupling, the spin subsystem is in a
mixed state for t > 0, even though the entire system is
evolving unitarily. When thermalization occurs, any small
subsystem of a large isolated system equilibrates towards a
thermal state and remains close to it for most times [4,10].
The so-called eigenstate thermalization hypothesis pro-

vides a potential explanation for the emergence of thermal-
ization in an isolated quantum system. It can be phrased as a
statement about matrix elements of few-body observables in
the eigenstate basis of a many-body Hamiltonian [8–13].
Within this conjecture, infinite-time averages of expectation
values of these observables agree with microcanonical
averages. A mathematical definition of this hypothesis and
further information are given in the Supplemental Material
[36]. Based on Refs. [8,9], to interpret experimental results,
we assume that a coupling distributes any of the energy
eigenstates of anuncoupled systemfjϕαig over a large subset
of the energy eigenstates of the coupled system fjψβig; i.e.,
jϕαi ¼

P
βcβðαÞjψβi [36]. Further, we consider that these

participating states liewithin a narrowenergy shell around the
energy of jϕαi [11,13]. As introduced in Refs. [1,4,6,10], an
effective dimension of the subset, deff ≡ 1=trðρ2Þ, provides
an estimation for the ergodicity of a system. It has been shown
that mean amplitudes of time fluctuations of expectation
values are bounded by 1=

ffiffiffiffiffiffiffi
deff

p
[4,6].

Correspondingly, for our system, we exploit these
predictions for infinite-time averages, both of spin expect-
ation values,

μ∞ðhσliÞ≡ lim
τ→∞

1

τ

Z
τ

0

dthσlðtÞi; ð3Þ
and of their time fluctuations,

δ∞ðhσliÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ∞ðhσli2Þ − μ∞ðhσliÞ2

q
: ð4Þ

To this end, we need to quantify the complexity of the
dynamics induced by the coupling. Hence, we extend existing
definitions of deff to a weighted effective dimension [36],

Deff ≡
X
α

wα

�X
β

jcβðαÞj4
�

−1
; ð5Þ

for ρð0Þ ¼ P
αwαjϕαihϕαj. Here, in contrast to deff , the

statistical average over wα is performed after calculating the
inverse participation ratio for each pure state in the mixture
[36]. Thereby, Deff also incorporates the number of partici-
pating states, but is normalized toDeff ¼ 1 for the uncoupled
system.
Throughout our Letter, we estimateDeff numerically. Deff

depends on N, Ω, ωz, η1, and ρð0Þ. We approximate the
latter by truncating the Hilbert spaceH toHtrunc, choosing a

phonon number cutoff nc, such that dimðHtruncÞ ¼
2ðnc þ 1ÞN ≲ 216 [36]. For a given computational power
and increasing N, the description of the initial-state pop-
ulation by trρtruncð0Þ becomes less representative, leading to
increasing systematic uncertainties, illustrated in Fig. 1(a).
Here, the exponentially growing complexity becomes evi-
dent: dimðHtruncÞ ≈ 222 is required to achieve trρtruncð0Þ ¼
0.99 for N ¼ 5. Figure 1(b) highlights the experimental
controllability of Deff . At fΩ;ωzg ≈ f2; 1g × ω1, the strong
coupling to numerous modes leads to a maximum in Deff .
For large ωz, the spin can get close to resonance with few
modes only, the latter composing a comparatively small
environment. Further, the range of accessible values of Deff
grows with increasing N; see Fig. 1(c).
We experimentally implement the single spin by two

electronic hyperfine ground states of 25Mgþ and add up to
four 26Mgþ to engineer the size of the bosonic environment
spanned by N (number of ions) longitudinal (axial)
motional modes. For details on our experimental setup,
see Refs. [48,49]. First, we prepare the spin state,
ρSð0Þ ¼ j↓ih↓j, by optical pumping and initialize the
phonon state ρEð0Þ by resolved sideband cooling [24]
close to the ground state. In calibration measurements we
determine that the modes are in thermal states with
n̄j¼1;…;N ≲ 1, which effectively enhances ηj¼1;…;N . Next,

FIG. 1. Complexity of the Hamiltonian studied numerically.
Parameters areω1=ð2πÞ ¼ 0.7 MHz, n̄j¼1;…;N ¼ 1. (a)Dimension
of truncated Hilbert space dim½HtruncðNÞ� for corresponding
fractions of initial-state population trρtruncð0Þ lying within Htrunc
(solid lines). ForN ¼ 3, for example, 85% liewithin dimðHtruncÞ ≈
210 (circle). We derive DeffðN;Ω;ωzÞ up to dimðHtruncÞ ¼ 216

(dashed line). (b) ChoosingΩ and varyingωz (dashed line), we can
tune the spin-phonon coupling into resonancewith differentmodes
(sketched at the bottom) and boost the system size. Note that the
actual number of participating states is much larger than the
normalizedquantityDeff ; seeEq. (5). (c)For fixedΩðNÞ [cf. dashed
line in (b)], DeffðωzÞ increases significantly with N. This enables
the systematic investigation of equilibration and thermalization
depending on the system size. Error bars show systematic
numerical uncertainties [36].
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we apply the spin-phonon interaction by continuously
driving Raman transitions with spin coupling rate Ω for
variable duration t, where ωz is the controllable detuning
from resonance [35]. Finally, we detect the spin by state-
dependent fluorescence. We choose to record hσzðtÞi, while
we numerically check that hσx;yðtÞi feature similar behav-
ior. To study dynamics for a large range of Deff , we choose
95 parameter settings: We set ω1=ð2πÞ ≈ 0.71 MHz, which
corresponds to an effective spin-phonon coupling param-
eter η1;eff ≡ η1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̄1 þ 1

p
≈ 0.94 for n̄1 ¼ 1. For each

N ¼ 1;…; 5, we use a fixed ΩðNÞ=ð2πÞ ¼ f0.73ð1Þ;
0.95ð3Þ; 1.28ð3Þ; 1.37ð3Þ; 1.58ð5Þg MHz and vary ωz from
0 up to 4ω1 [36].
In Fig. 2, we present two sets of hσzðtÞi for

N ¼ 1;…; 5. Each data point is obtained by averaging
over r ¼ 500 repetitions yielding an expectation value
with statistical uncertainty ∝ 1=

ffiffiffi
r

p
. We compare hσzðtÞi

with numerical full ED of Eq. (1) with dimðHtruncÞ ≤ 213.
As N increases, the accuracy of numerical results
decreases significantly. For N ¼ 4, we have trρtruncð0Þ <
0.72. For N ¼ 5, since trρtruncð0Þ < 0.5, we exclude
numerical results in Figs. 2 and 3; here, even state-of-
the-art full ED methods [16] could consider trρtruncð0Þ ≲
0.75 only [36]. For ωz ¼ 0 and N ¼ 1, we confirm
oscillations of high and persisting amplitude due to the
coupling to the only mode at ω1. For increasing N, the
spin couples to N modes including higher order processes,
such that spin excitation gets distributed (entangled) into
the growing bosonic environment. Hence, coherent oscil-
lations at incommensurate frequencies lose their common
contrast and appear damped. After the transient duration

t=τS ≈ 1, with τS ≡ 2π=Ω, the spin observable remains
close to its time average. Still, the conservation of
coherence of the evolution is evident in our measurements:
Revivals of spin excitation due to the finite size of the
system appear at τrev ∼ 1=δE, where δE is the mean
energy difference between modes. And, for ωz ≈Ω,
negative time averages of hσzðtÞi indicate equilibration
of the system to the ground state of H, biased by ωz. Both
observations present strong independent evidence that our
total spin-phonon system is near-perfectly isolated from
external baths. Independent measurements yield a
decoherence rate of γdecτS ≈ 0.01 [36]. This complements
the agreement of experimental with numerical results,
where we set γdec ¼ 0.
We analyze all recorded time evolutions, each containing

S ≈ 100 data points in the interval ½τS; 13τS�, by deriving
time averages,

μexpðhσziÞ≡ 1

S

X
t∈½τS;13τS�

hσzðtÞi; ð6Þ

and mean amplitudes of time fluctuations,

δexpðhσziÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S − 1

X
t∈½τS;13τS�

½hσzðtÞi − μexpðhσziÞ�2
s

: ð7Þ

The quantities are illustrated in two examples in Fig. 2(c).
We plot these in Fig. 3 for N ¼ 1;…; 5 and as a function of
ωz, together with full ED results for N ¼ 1;…; 4 (solid
lines). Tuning ωz across the maximum ofDeff , cf. Fig. 1(b),
and comparing μexpðhσziÞ to numerically calculated

FIG. 2. Measured unitary time evolution hσzðtÞi. Experimental results (black dots, error bars: 1 s.d.) for N ¼ 1;…; 5 compared to full
ED (solid lines). We exclude numerical results for N ¼ 5 due to their large systematic uncertainties. Oscillations (time fluctuations) of
high amplitude during the transient duration t=τS ≲ 1 are driven by the evolution of ρð0Þ towards the ground state of H. (a) For ωz ¼ 0
and increasing N, excitation is coherently exchanged with a growing number of modes resulting in revivals at τrev (shaded areas). (b) For
ωz ≈ ΩðNÞ, expectation values fluctuate around a negative offset. Revivals and this nontrivial bias emphasize the coherence of the
dynamics. (c) Histograms of experimental measurements sample the probability distribution which underlies hσzðtÞi. Here, we show
these for t ∈ ½τS; 13τS�, ωz ≈ ΩðNÞ, and N ¼ 1, 5 to exemplify the quantities μexpðhσziÞ and δexpðhσziÞ.
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microcanonical averages μmicroðhσziÞ (dashed lines) [36],
we find agreement for a larger range of ωz when increasing
N. This indicates an extended regime permitting thermal-
ization. For large ωz, we observe its breakdown as the spin
couples to an environment of decreasing complexity.
Finite-size effects are prominent in resonances of
μexpðhσziÞ and δexpðhσziÞ for N ¼ 1, while their amplitudes
gradually fade away for higher N.
For further analysis, we postselect data points well

described by microcanonical averages, i.e., with a deviation
of less than 0.1 [36]. For those, we show the dependence of
δexpðhσziÞ on N in Fig. 4(a). Although N sets the size of the
environment, the complexity of the spin-phonon coupling is
tuned by Ω, ωz, η1, ρð0Þ, and N, cf. Figs. 1(b) and 1(c).
Consequently, we study the correlation between δexpðhσziÞ
and Deff by combining our experimental results with
numerical calculations of Deff in Fig. 4(b). In general, mean
amplitudes of time fluctuations are predicted to be upper
bounded by 1=

ffiffiffiffiffiffiffi
deff

p
. For our system, we even find a

proportionality, δ∞ðhσziÞ ∝ 1=
ffiffiffiffiffiffiffiffi
Deff

p
: We motivate this scal-

ing, illustrated by the solid line in Fig. 4(b), by a heuristic
derivation considering pure initial states and infinite times,
which relies on the eigenstate thermalization hypothesis [36].
Our measurements feature such a scaling for Deff ≲ 25,
despite our nonidealized initial states and finite observation
duration. We observe that, for Deff ≳ 25, measured mean
amplitudes of time fluctuations do not further decrease. We
attribute this to the fact that a system of increasing complex-
ity features decreasing energy differences in its spectrum,
corresponding to smaller relevant frequencies in the dynam-
ics. Explicitly, the system requires longer durations to
approach theoretically predicted values. Here, theory con-
siders averages for infinite time, and does not make any
prediction about relevant time scales in the dynamics.
In summary, we scale our trapped-ion system including its

engineered environment up to relevant Hilbert space dimen-
sions challenging state-of-the-art full ED. We present time

averages and fluctuations of a spin observable and exploit an
effective dimension to study their dependence on the size of
the system. We observe the emergence of quantum statistical
mechanics within our isolated system despite its moderate
size. Simultaneously, we monitor the coherent dynamics of

FIG. 3. Time averages and mean amplitudes of time fluctuations of hσzðtÞi. These are calculated from experimental traces (black dots,
error bars: 1 s.d., derived from the underlying probability distribution of hσzðtÞi [36]) for varying ωz andN ¼ 1;…; 5 and comparison to
full ED (solid lines). (a) Increasing ωz shifts the ground state ofH, adjusts spin-mode couplings, and variesDeff . Even for small systems,
we find agreement of time averages with microcanonical averages, μexpðhσziÞ ≈ μmicroðhσziÞ (dashed lines, shaded areas indicate
systematic uncertainties). As Deff rapidly increases with N, time averages follow microcanonical averages for a larger range of ωz.
(b) δexpðhσziÞ gradually decreases with N, and correlated resonances in μexpðhσziÞ and δexpðhσziÞ fade away, indicating that we tune our
system from microscopic to mesoscopic size.

FIG. 4. Scaling of mean amplitudes of time fluctuations with N
andDeff . (a)We plot δexpðhσziÞ (error bars: 1 s.d.) as a function ofN.
The spread forN ≤ 2 highlights finite-size effects, and we show an
average value for each N (large symbols, error bars: 1 s.d.). For
N ¼ 1;…; 4, we observe a decay that ceases for N ¼ 5.
(b) δexpðhσziÞ as a function of calculatedDeff (error bars: systematic
uncertainties),which captures thedependenceof the effective system
size on all experimental parameters. We compare to a scaling δ∞ ∝
1=

ffiffiffiffiffiffiffiffi
Deff

p
(solid line), motivated for our system, and our measure-

ments agree forDeff ≲ 25. Further increasingDeff , the system needs
longer durations to resolve decreasing energy differences in the
environment, unveiling the importance of time scales.
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thermalization, revealing the importance of initial and
transient time scales by direct observation of the evolution
towards thermal equilibrium. Thereby, we contribute to open
questions in the field of thermalization [1,4,22]. Our
approach admits generating a multitude of initial conditions,
choosing different system and environment states, and
preparing initial correlations [24,25,27]. In addition, it
allows us to measure a variety of observables [24,27,50].
Applying those techniques, we can study, e.g., non-
Markovianity of the dynamics, which is evidenced by
revivals in the evolution, in detail [51,52]. Further, increasing
the strength of the spin-phonon coupling, we can effectively
expand the observable time span. Possible extensions
include incorporating more and larger spins, tuning long-
range interactions, adding external baths [30,35,53], and
propelling experimental quantum simulations. Beyond
numerical tractability, our experimental setup can be used
as a test bed to assess the validity of approximated theoretical
methods that address strong couplings to vibrational baths in
a variety of fields, such as molecular and chemical physics.
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experiment, and M. Wittemer for comments on the manu-
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No. PCIG14-GA-2013-630955) (D. P.), and the Freiburg
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Note added—Recently, we became aware of related studies
with trapped ions, superconducting qubits, and ultracold
atoms [54–56].
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