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We show that the honeycomb Heisenberg antiferromagnet with J1=2 ¼ J2 ¼ J3, where J1, J2, and J3
are first-, second-, and third-neighbor couplings, respectively, forms a classical spin liquid with pinch-point
singularities in the structure factor at the Brillouin zone corners. Upon dilution with nonmagnetic ions,
fractionalized degrees of freedom carrying 1=3 of the free moment emerge. Their effective description in
the limit of low temperature is that of spins randomly located on a triangular lattice, with a frustrated
sublattice-sensitive interaction of long-ranged logarithmic form. The XY version of this magnet exhibits
nematic thermal order by disorder. This comes with a clear experimental diagnostic in neutron scattering,
which turns out to apply also to the case of the celebrated planar order by disorder of the kagome
Heisenberg antiferromagnet.
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Motivation.—The honeycomb lattice has—somewhat
belatedly—become one of the prime hunting grounds for
spin liquids (SL) in d ¼ 2 [1], in addition to the kagome
and the J1 − J2 square lattice Heisenberg models, which
have been the focus of much attention over decades,
continuing until today. In both these latter cases [2–11],
confidence in the existence of a quantum SL state for
S ¼ 1=2magnets has ebbed and flowed, while the classical
(large-spin) versions evade liquidity by exhibiting rather
interesting forms of order by disorder [12–20].
The richness of magnetic models on the honeycomb

lattice—bipartite, like the square lattice—has therefore come
as somewhat of a surprise. Initially emulating its brethren by
appearing to support a quantumSL in a Hubbardmodel [21],
it has been attracting attention in the context of the fraction-
alized excitations of the Kitaev honeycomb model [22],
exhibiting highly unusual exactly soluble quantum SL
phases. Particular impetus arose from the suggestion that
the Kitaev Hamiltonian may describe the materials
fNa;Lig2IrO3, provided a Heisenberg term is added
[23–25]. In fact, detailed studies of these materials suggest
that further nearest neighbor terms play an important role
in explaining spiral ordering at low temperatures [26], and
one of the models studied in some detail is the J1-J2-J3
Heisenberg model, which had already been subject to
considerable earlier attention [27–30]. In determining the
Hamiltonian appropriate to these materials, it has turned out
to be instructive to consider their response to disorder [31].
Synopsis.—Here, we identify and study in detail an

unusual, hitherto overlooked, classical SL state on the
honeycomb lattice, associated with the (known) degeneracy
point J1=2 ¼ J2 ¼ J3 of the Heisenberg model on the
honeycomb lattice. This represents the first realization of a
SL in d > 1 of edge-sharing simplices, which here take the
form of octahedra. This state exhibits novel disorder effects

whereby, upon dilution, fractionalized moments carrying
one third of the microscopic spin moment appear. These
fractionalized moments interact via a frustrated, sublattice-
dependent, long-range interaction in the limit of low temper-
ature,T. The structure factor of the puremodel exhibits pinch
points, rather unexpectedly for a lattice whose dual is not
bipartite. These reside at the zone corner three-sublattice
wave vector Q (which distinguishes between the three
sublattices of the underlying triangular Bravais lattice).
We show that these phenomena all derive from the fact

that the low-temperature behavior of the spins is controlled
by the spatial fluctuations of the three-sublattice order
parameter of a dual surface with triangular symmetry.
This SL thus represents a new class of low-temperature
behavior, quite distinct from classical spin liquid states on
networks of corner-sharing simplices in which the low-
temperature correlations are controlled by fluctuations of a
dipolar (divergence-free) vector field defined on the links of
the corresponding bipartite dual lattice. Additionally, the
XY version of this system is interesting. It exhibits nematic
order by disorder: As T → 0, the spins fluctuate predomi-
nantly around a nematic axis, making them effectively
Ising-like, and causing an algebraic decay of spin corre-
lations at certain wave vectors. This leads to peaks in the
structure factor that turn out to be straightforwardly
detectable in neutron scattering, providing an unusually
direct signature of nematic order.
Model.—The Hamiltonian for classical OðnÞ spins ~Si of

unit length on sites i of the honeycomb lattice reads

H ¼ J1
X
h~r;~r1i

~S~r~S~r1 þ J2
X
⟪~r;~r2⟫

~S~r~S~r2 þ J3
X

hhh~r;~r3iii
~S~r~S~r3

¼ J
2

X
~R

½~S⎔ð~RÞ�2 þ const; ð1Þ
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where h~r; ~r1i, ⟪~r; ~r2⟫, and hhh~r; ~r3iii refer respectively to
first, second, and third nearest neighbor pairs. In the second
line, which follows from fixing J1=2 ¼ J2 ¼ J3 ¼ J,
~S⎔ð~RÞ is the total spin of the hexagon labeled by the dual
triangular lattice site ~R at its center.
This form shows that any, and each, configuration where

every hexagon ~R has vanishing total spin, ~S⎔ð~RÞ ¼ 0, is a
ground state. Such a rewriting is helpful for geometrically
frustrated lattices with a corner-sharing structure of elemen-
tary simplices [19,20], examples being pyrochlore (corner-
sharing tetrahedra) or kagome (corner-sharing triangles)
lattices. It immediately allows us to estimate the dimen-
sionality of the ground state manifold, F. This proceeds
by subtracting the number of constraints, K, imposed
by Eq. (1), from the total number of degrees of freedom,D,
of the spin system.
Constraint counting.—For a system of n-component

spins with N such simplices, and each spin part of b
simplices, D ¼ qðn − 1Þ=b per simplex, where the number
of spins in a simplex q ¼ 3, 4, 6 for a triangle, tetrahedron,
and octahedron, respectively. Each simplex imposes K ¼ n
constraints, as each component of its total spin must vanish.
Hence,

F ¼ qðn − 1Þ
b

− n: ð2Þ

To maximize F, and hence enhance the chance of finding a
SL [19,20], one should minimize b, or maximize n and q.
Indeed, b is minimal for corner-sharing arrangements, and
q ¼ 4, n ¼ 3 result in the well-established classical SL on
the pyrochlore lattice. Triangle-based lattices (kagome has
q ¼ 3) need higher, n ≥ 4, component spins for a similar
SL to arise [32].
The J1-J2 model on the square lattice with J2 ¼ J1=2

can be thought of as edge-sharing tetrahedra, with a large
q ¼ 4; it does not support F > 0 for any n. Indeed, no such
Heisenberg model with F > 0 has been identified for
edge-sharing simplices at all so far. However, from Eq. (2),
F ¼ 1 for q ¼ 6 and b ¼ 3, which corresponds to the
frustration point of the honeycomb lattice, Eq. (1). It can be
thought of as edge-sharing octahedra (Fig. 1), and thus
presents the first instance of a possible SL on an edge-
sharing lattice. It is also the first with b > 2.
Effective theory and numerics.—To explore the conse-

quences of this unusual geometry for the low-temperature
behavior of n component spins, we now develop a
low-energy effective description. Consider an A-sublattice
(B-sublattice) site ~rA (~rB) of the honeycomb lattice, which
sits at the center of an “up-pointing” (“down-pointing”)
triangle comprising dual lattice points ~Ra, ~Rb, and ~Rc
belonging to the three sublattices of the tripartite dual
triangular lattice. One writes the corresponding OðnÞ spins
~S~r in terms of ~ζ ~R and ~τ~R, twoOðnÞ vector fields on the dual
triangular lattice.

~S~rA ¼
X

α¼a;b;c

ð~τ~Rα
þ ~ζ ~Rα

Þ; ~S~rB ¼
X

α¼a;b;c

ð~τ~Rα
− ~ζ ~Rα

Þ:

Next, we note that f~ζg drop out of the classical
Hamiltonian Eq. (1) when rewritten in these variables.
We have

Hðf~SgÞ ¼ F2ðf~τgÞ þ const; ð3Þ

where

F2ðf~τgÞ ¼
βJ
2

X
~R

�
6~τ~R þ 2

X
~Rn∈∂ ~R

~τ~Rn

�
2
: ð4Þ

Here, ~Rn ∈ ∂ ~R denotes the six dual triangular lattice sites
~Rn that are nearest neighbors of the dual triangular lattice

site ~R. Thus ~ζ encodes the T ¼ 0 fluctuations of the
classical SL, while ~τ captures thermal fluctuations.
To obtain the form of the entropic contribution to the

phenomenological low-temperature free-energy density, we
take guidance from the self-consistent Gaussian approxi-
mation (equivalently, the large-n limit) [33]. As is well
known, this predicts an entropic contribution that takes the

form ρ
2

P
~r
~S2~r at low temperature. Incorporating this into our

description, we see that the partition function can be written

as a product of ~ζ and ~τ partition functions, with actions

Sζ ¼ F1ðf~ζgÞ; Sτ ¼ F1ðf~τgÞ þ F2ðf~τgÞ; ð5Þ

where

F1ðf~vgÞ ¼
ρ

2

X
~r

h
~v~Rað~rÞ þ ~v~Rbð~rÞ þ ~v~Rcð~rÞ

i
2 ð6Þ

for f~vg ¼ f~ζg or f~τg. Here, the phenomenological spin

stiffness ρ is chosen to ensure h~S2~ri ¼ 1.

FIG. 1. Projection of the octahedron into the hexagon and the
J1-J2-J3 model on the honeycomb lattice. The J3 interactions are
differentiated with colors.
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The T → 0 limit is thus characterized by a particularly
simple action in which the ~τ fields do not contribute. This

action, as well as the expressions for the physical spins ~S,

are both invariant under ~ζð~RÞ→~ζð~RÞþRe½~χexpð2πiQ · ~RÞ�
for any constant ~χ, where Q is the three-sublattice ordering
wave vector. Thus, this limit of our effective theory

describes the spatial fluctuations (parametrized by ~ζ) of
the three-sublattice order parameter of a dual surface with
triangular symmetry. At nonzero temperature, the partition
function also receives contributions from fluctuations of ~τ,
which exhibit a similar symmetry.
Using this effective description, we have analytically

computed spin correlations in the T → 0 limit. The corre-
sponding spin structure factor features pinch points at Q.
While such pinch points are the defining characteristic of
algebraic SLs [34], their present location at the three-
sublattice wave vector reflects the unusual underlying
tripartite structure of the low-temperature correlations
implied by our theory. Indeed, the very existence of pinch
points in the Heisenberg case comes as somewhat of a
surprise given the nonbipartite nature of the dual triangular
lattice. In the corresponding corner-sharing models, the
bipartiteness of the dual lattice (square, honeycomb, or
diamond lattice) is a crucial ingredient for such pinch
points [34]. For instance, in work close in spirit to the
present one, on bosons on a honeycomb and the dual
triangular lattice [35], one finds an emergent Ising gauge
field implying the absence of pinch points.
In order to test these predictions, we have performed

Monte Carlo (MC) simulations that employ a combination
of heat-bath and microcanonical moves as well as parallel
tempering moves. The structure factor from MC simulation
of Heisenberg spins (Figs. 2) agrees with the analytical
prediction of our effective theory. In sharp contrast, for
n ¼ 2, the corresponding XY model, low-temperature
peaks develop in addition to the pinch points. This is an
instance of nematic (collinear) order by disorder (see
Supplemental Material [36] for more details), as is readily
verified by constraint counting [19,20]. The appearance of
these peaks is a consequence of, and provides an unusually
direct signature of, nematic ordering. This interpretation is

confirmed (Fig. 3) by a low-T specific heat of c ¼ 0.375kB
per spin, reduced from the value of c ¼ bnkB=2q expected
from equipartition in the absence of order by disorder
[15–19], as is found in the Heisenberg magnet with
c ¼ 0.75kB (see Supplemental Material [36]).
We note that the unexpected appearance of these peaks is

a diagnostic for nematic ordering more generally—indeed,
they appear even for the coplanar order by disorder [15,16]
of the kagome Heisenberg antiferromagnet. The reason for
their appearance is beautifully indirect: nematic ordering
goes along with the emergence of discrete (Ising for our
model, Potts for the kagome case [15,16]) effective degrees
of freedom from the continuous Heisenberg ones. Now, in
two dimensions, such a discreteness leads to the appearance
of additional operators in the effective low-energy theories,
as described in the pedagogical introduction by Zeng and
Henley on height models [37]. They, in turn, lead to the
peaks in the structure factor generally reflecting algebraic
(rather than long-range) spin correlations in addition to the
pinch points as shown in Fig. 2 for our case; or, for
kagome, in the comparison between large-N [33] and
low-temperature N ¼ 3 [38] structure factors. The nematic
diagnostic is therefore fundamentally a diagnostic of
emergent discreteness.
Dilution effects.—The ground states of SLs often are less

revealing of their topological nature than their excitations.
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FIG. 2. Structure factor as obtained in Monte Carlo (MC)
simulations of the pristine Heisenberg (left) and XY (right)
systems. Both results correspond to N ¼ 1800 spins at
T=J ¼ 0.01.
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An elegant way to visualize the latter as effectively a
ground state property is to introduce disorder that then
nucleates excitations. In SLs, this is perhaps most easily
done by replacing some of the magnetic ions with non-
magnetic ones. For classical SLs, this dilution problem has
been studied in some detail both experimentally [39–42],
and theoretically [43–47]. In particular, for the cases of
SrCr9pGa12−9pO19, the checkerboard and the pyrochlore
lattices, it was found that fractional impurity moments
carrying one half of the moment of a free spin arise as a
cooperative phenomenon. These so-called orphan spins
occur when all but one of the spins of a simplex are
replaced—so that the total spin of that simplex [see Eq. (1)]
can no longer possibly vanish.
With this motivation, we have analyzed the response of

the honeycomb Heisenberg SL to dilution within our
effective field theory, incorporating missing sites as a
constraint ~S − ~r ¼ 0, and retaining the orphan spin degree
of freedom as a unit vector in our description [45,46]. We
find that all other kinds of defects (i.e., hexagons with more
than one spin left) do not lead to fractionalization or a Curie
tail contribution to the magnetic susceptibility at low
temperature for the same reasons as for the corner-sharing
lattices [44]. In contrast, the orphans provide a number of
signatures of the new structure of the honeycomb SL. First
of all, they directly reflect the fact that we have b ¼ 3 edge-
sharing octahedra meeting at each site—the fractional
impurity moment is not one half but one third of that of
a free spin. This is displayed in Fig. 4 (top panel) where our
analytical prediction is compared with numerical results
for the impurity susceptibility. This is, to our knowledge,
the first instance of fractionalization into three items in a
classical spin model.
Interactions between these orphans are entropic in nature

and take the form of an effective Heisenberg exchange Jeff
mediated by the bulk SL, and hence reflect the structure of
the latter. In the classical SLs known so far, these effective
interactions can be written in a form that is uniformly
antiferromagnetic [48]. Here, this is not possible: We now
find that these interactions are antiferromagnetic (ferro-
magnetic) for orphans residing on the same sublattice
(different sublattices) of the dual triangular lattice, respec-
tively, with the antiferromagnetic interactions being twice
as strong as the ferromagnetic ones. This intricate structure
in the effective exchange couplings follows from our field
theory, which relates these entropic interactions to corre-

lations between the thermally excited net spins ~S⎔ð~RÞ
[Eq. (1)] in the pristine bulk spin liquid,

βJeffð~R1; ~R2Þ ≈
−h~S⎔ð~R1Þ · ~S⎔ð~R2Þi
h~S⎔ð~RÞ · ~S⎔ð~RÞi2

: ð7Þ

For low T and large distances j~R1 − ~R2j ≫ a between the
orphan spins, where a is the lattice spacing, this gives a
scaling form (Fig. 4),

βJeff ¼ ηð~R1; ~R2ÞF ½ð~R1 − ~R2Þ
ffiffiffiffi
T

p
� ð8Þ

¼T→0 1

2π
ηð~R1; ~R2Þ logðj~R1 − ~R2jÞ; ð9Þ

where η ¼ þ1 (η ¼ −1=2) if ~R1 and ~R2 are on the same
sublattice (different sublattices) of the dual triangular
lattice.
Outlook.—Our model, notwithstanding its simplicity,

displays a plethora of phenomena of current interest; the

unusual emergent ~τ and ~ζ fields and the new fractionalized
behavior of 1=3 for the impurity spin moments show that
these nontrivial phenomena, usually associated with the
quantum realm, can emerge even in a classical setting.
Additionally, the resulting pattern of frustrated logarithmic
interactions between the impurity moments is as yet
unstudied, and will possibly lead to a spin glass, unlike
in the bipartite cases [48].
As for realizations, the 2∶1∶1 ratio of exchange inter-

actions is natural if exchange is via an ion on the hexagon
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center with no angular dependence, as the nearest neighbor
bonds are part of two hexagons. Known experimental
values are encouragingly nearby, being close to
2∶1.6∶1.6 [24]. Hence direct observation of these phenom-
ena might be possible, the main obstacle perhaps being the
effects of quantum fluctuations for S ¼ 1=2. Quite gen-
erally, at finite T, the classical SL behavior is favored over
competing phases on account of its large entropy, and, in
particular, fans out from the degeneracy point (see
Supplemental Material [36]). We hope that this work
stimulates further investigation on appropriate honeycomb
materials.
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