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At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for
collisions with static defects and phonons becomes greater than the sample width. Under this condition, the
electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of
2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the
functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the
dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field
leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates
that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the
ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate
magnetic fields should be treated as a viscous fluid.
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In modern high-quality GaAs heterostructure samples
with low-temperature mobilities of 2D electrons of the
order of 106–107 cm2=Vs the electron mean free path for
collisions with static defects and phonons, l, can be greater
than the sample width w. In this case, the transport
properties depend on the character of the electron scattering
at the sample edges. If the scattering is specular and the
sample has the form of a long rectangle, then, after several
collisions with the edges, an electron will eventually be
scattered by a defect or a phonon. These processes will
determine the Drude resistivity ϱD ¼ m=e2nτ, τ ¼ l=vF,
similar to the usual case when l ≪ w. Here n is the electron
concentration, e and m are the electron charge and the
effective mass, and vF is the Fermi velocity.
If the scattering on the sample edges is diffusive,

the electron transport will be controlled by the relation
between the mean free path for electron-electron collisions,
lee, and the sample width w. When lee is greater than w,
the scattering at the edges dominates and the trans-
port mean free path will be of the order of w. The
corresponding “ballistic” resistivity is ϱball ¼ m=e2nτball,
where τball ∼ w=vF. In the opposite case, lee ≪ w, the
electron transport should resemble the Poiseuille flow in
conventional hydrodynamics with the resistance propor-
tional to the electron shear viscosity η ∼ vFlee. This idea
was put forward (for three-dimensional metals) by R. N.
Gurzhi with co-authors a long time ago [1–3], and more
recently it was also applied to various aspects of two-
dimensional electron transport [4–10]. The equations
describing a flow of a viscous electron fluid in a sample
have some common features with the magnetohydrody-
namic equations of charge-compensated viscous fluids
(e.g., plasma in the hydrodynamic limit) [11,12].
If a sample is placed in magnetic field and the electron

cyclotron radius Rc is much smaller than the sample width

w, the hydrodynamic regime can be realized even when
lee > w (but herewith lee ≪ l) [2]. Indeed, an electron
moving along the trajectory similar to the circle with the
radius Rc ≪ w does not scatter on the sample edges, but
undergoes all other types of scattering. The electron
viscosity, like other kinetic coefficients, becomes a tensor
depending on magnetic field [13,14].
Another type of solid state system with the hydro-

dynamic mechanism of electron transport was studied in
Ref. [15]. The authors of that paper considered a 2D
viscous electron flow bypassing the defects located one
from another at the distances of the order of d ≫ lee. If the
electron-electron scattering dominates, a viscous flow in
the regions between the defects is formed and the sample
resistance is again proportional to the viscosity η.
In this Letter we develop the hydrodynamic approach

for the 2D electron transport in a magnetic field [16]. We
calculate the electron viscosity tensor in a shortcut way
similar to the textbook derivation of the Drude conductivity.
The nondiagonal viscosity ηxy determines the dispersion law
of the 2D hydrodynamic waves in a magnetic field. The
decrease of the diagonal viscosity ηxxwith themagnetic field
provides a mechanism for large negativemagnetoresistance
of 2D electrons which is temperature and sample width
dependent [17]. We perform detailed calculations of mag-
netoresistance for the conventional Poiseuille flow in a
long rectangular GaAs sample with rough edges. We also
qualitatively demonstrate that the hydrodynamic negative
magnetoresistance arises in the 2D samples of other types,
in particular, in the samples containing large-radius defects.
The temperature-dependent giant negative magneto-

resistance of 2D electrons in high-quality GaAs quantum
wells at low temperatures and moderate magnetic fields,
reported in several recent publications [18–20], and espe-
cially the “colossal” negative magnetoresistance, observed

PRL 117, 166601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

0031-9007=16=117(16)=166601(6) 166601-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.166601
http://dx.doi.org/10.1103/PhysRevLett.117.166601
http://dx.doi.org/10.1103/PhysRevLett.117.166601
http://dx.doi.org/10.1103/PhysRevLett.117.166601


in Ref. [21], are not understood at the present time. Several
striking features of these experiments, especially, the
temperature dependence of magnetoresistance, are in fine
agreement with the predictions of our model. Our theory
explains the existence of a magnetoresistance peak as
well as its broadening and disappearing with temperature
[22–26]. Thereby we conclude that 2D electrons in the
ultrahigh-mobility GaAs quantum wells in moderate mag-
netic fields form a viscous fluid [27].
We recall the simple hydrodynamic approach in the

extreme case when the electron mean free path lee is much
less than the 2D sample width w, while the mean free path
for scattering by phonons and static defects is much greater
than w. Also the sample length L is assumed to be much
greater than w. The hydrodynamic electron velocity VðyÞ,
directed along x, obeys the equation

∂V
∂t ¼ η

∂2V
∂y2 þ e

m
E; ð1Þ

where η ¼ vFlee=4 is the viscosity of the 2D degenerate
electron gas and E is the electric field directed along x.
In the present work we neglect the compressibility and the
thermal conductivity effects.
The conventional boundary conditions require V ¼ 0 at

y ¼ �w=2. This implies that the electron scattering at the
sample edges is diffusive [28]. In the stationary case, the
solution of Eq. (1) gives the parabolic velocity profile VðyÞ.
Integrating the current density jxðyÞ ¼ enVðyÞ over y one
obtains the resistivity

ρ ¼ m
e2nτ⋆

; τ⋆ ¼ w2

12η
: ð2Þ

Here τ⋆ is the “effective” relaxation time which, in the
hydrodynamic regime, replaces the normal momentum
relaxation time τ in the formula ϱD ¼ m=e2nτ.
To be precise, by the electron-electron scattering time

τee ¼ lee=vF we have to imply the relaxation time τ2;ee of
the second moment of the electron distribution function
(i.e., its harmonics ∼eimϕ with m ¼ �2, where ϕ is the
angle of the single electron velocity). For such a time a
calculation was done for an almost ideal Fermi gas and the
Debye model for screening of the Coulomb potential.
Following the approach of Ref. [35], we obtained

ℏ
τ2;eeðTÞ

¼ Aee
T2

EF
; ð3Þ

where T is the temperature, EF ¼ mv2F=2 is the Fermi
energy, and Aee ¼ AeeðEFÞ is a dimensionless value of the
order of 1 for EF corresponding to typical GaAs samples.
However, for these samples the electron-electron interac-
tion energy is of the same order of magnitude as the
electron kinetic energy. Calculation of the time τ2;ee for a
system of strongly interacting electrons is very laborious,

but it leads to the result, which is quite similar to Eq. (3)
(see Refs. [29,36]).
Thus the characteristic features of the ideal viscous

electron transport consist in (i) inverse dependence of
resistivity on the square of the sample width, ρ ∼ 1=w2,
and (ii) inverse dependence of resistivity on the square of
temperature T, ρ ∼ η ∼ τ2;ee ∼ 1=T2. Aweakly pronounced
decrease of resistance with increasing temperature was
recently reported in Ref. [21] in a limited temperature
interval below 5 K.
It should be noted that generally the electron viscosity is

not necessarily related to electron-electron collisions. Any
process providing the relaxation of the second moment of
the electron distribution function (e.g., scattering on static
defects or, more generally, on disorder) gives rise to
viscosity. So the viscosity coefficient η is proportional to
the relaxation time τ2, for which the reciprocal value, 1=τ2,
contains the contribution Eq. (3) from the electron-electron
scattering as well as the temperature-independent contri-
bution from electron scattering on disorder:

η ¼ 1

4
v2Fτ2;

1

τ2ðTÞ
¼ 1

τ2;eeðTÞ
þ 1

τ2;0
: ð4Þ

The result given by Eq. (2) is modified if the momentum
relaxation time τ due to interaction with phonons and static
defects is comparable to τ⋆. In this case, the usual bulk
friction term −V=τ should be added to the right-hand side
of Eq. (1). The modified velocity VðyÞ profile can be easily
found, and integration over y gives the following expres-
sion for the resistivity [2,3]:

ρ ¼ m
e2nτ

1

1 − tanhðξÞ=ξ ; ξ ¼
ffiffiffiffiffiffiffi

3τ⋆
τ

r

: ð5Þ

For τ ≫ τ⋆, tanh ξ ≈ ξ − ξ3=3 and the expression for the
resistivity in Eq. (5) reduces to Eq. (2). In the opposite case,
when τ ≪ τ⋆, tanh ξ ≈ 1 ≪ ξ and one recovers the usual
Drude resistivity ϱD ¼ m=e2nτ defined by the momentum
relaxation time τ.
It turns out that the following simple interpolation

formula:

ρ ¼ m
ne2

�

1

τ
þ 1

τ⋆
�

; ð6Þ

reproduces the expression Eq. (5) for any value of τ⋆=τ with
an accuracy better than 11%. Thus the effect of the electron
viscosity can be regarded as a parallel channel of electron
momentum relaxation.
The values of the momentum relaxation time τph

for the scattering of a 2D electron by acoustic phonons
in the GaAs quantum well were estimated by using the
results of Refs. [37]. According to those papers, the
momentum relaxation rate is proportional to temperature,
1=τphðTÞ ¼ AphT, at T ≳ 4 K and to higher powers of
temperature at T ≲ 4 K (for the structure studied in
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Ref. [21]). For the total bulk momentum relaxation rate we
should use the expression

1

τðTÞ ¼
1

τphðTÞ
þ 1

τ0
; ð7Þ

where the term 1=τ0 does not depend on temperature and is
due to electron scattering on disorder.
Figure 1 shows the temperature dependencies of the

mean free paths l2 ¼ vFτ2 and l ¼ vFτ calculated accord-
ing to Eqs. (4), (7), Eq. (1) in Ref. [29], and Refs. [37] with
the parameters τ2;0, Aph, τ0, AFl

ee that will be used further in
the text to fit the experimental data from Ref. [21].
We now address our main point: the effects resulting

from the dependence of the electron viscosity on the
magnetic field perpendicular to the 2D layer.
The internal friction between two layers of the electron

fluid moving with different velocities is provided by the
exchange of electrons between these layers (see Fig. 2). In
the absence of a magnetic field, electrons from one layer
penetrate into another one on a distance which is of the
order of l2, and this is what defines the viscosity. However,
in the presence of the magnetic field this distance is limited
by the cyclotron radius Rc. Thus at a strong magnetic field
the viscosity should tend to zero.
We derived the following expressions for the electron

viscosity tensor ηij [29]:

ηxx ¼
η

1þ ð2ωcτ2Þ2
; ηxy ¼

2ωcτ2η

1þ ð2ωcτ2Þ2
; ð8Þ

where ωc ¼ eB=mc is the cyclotron frequency, and η is
the viscosity at zero magnetic field introduced above.
Dissipation of energy in a viscous flow is related only to
the coefficient ηxx.
The formula for the dissipative viscosity coefficient ηxx,

similar to the expression in Eq. (8), was obtained by

M. S. Steinberg for a 3D metal in Ref. [38]. The non-
diagonal viscosity ηxy, to our knowledge, was not consid-
ered for 2D electrons in the literature previously.
For the hydrodynamic velocity of a 2D viscous flow in

magnetic field we derived the motion equation [29]:

∂V
∂t ¼ ηxxΔV þ ½ðηxyΔV þ ωcVÞ × ez� þ

e
m
E −

V
τ
; ð9Þ

where Δ ¼ ∂2=∂x2 þ ∂2=∂y2. Since we neglect compress-
ibility of the electron fluid, we must assume that divV ¼ 0.
In the stationary regime and in the absence of the Hall

current, Vy ≡ 0, Eq. (9) for a long sample reduces to

ηxx
d2V
dy2

þ e
m
Ex −

V
τ
¼ 0; ð10Þ

ηxy
d2V
dy2

þ ωcV −
e
m
Ey ¼ 0: ð11Þ

Here V ¼ Vx, ExðyÞ ¼ const is the electric field due to the
applied voltage, and EyðyÞ is the Hall electric field
corresponding to the condition Vy ≡ 0.
For the case of the absence of momentum relaxation in

the bulk, 1=τ ¼ 0, Eq. (10) coincides with the stationary
version of Eq. (1) if one replaces η by ηxx. Thus the
resistivity ρ will be given by Eq. (2) with the additional
factor ½1þ ð2ωcτ2Þ2�−1, describing the giant negative
magnetoresistance. For the case of a nonzero bulk momen-
tum relaxation rate, 1=τ ≠ 0, the resistivity ρ corresponding
to Eq. (10) will be calculated by Eq. (5), where

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3τ⋆
τ

½1þ ð2ωcτ2Þ2�
r

; ð12Þ
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FIG. 1. The mean free paths lðTÞ and l2ðTÞ for relaxation of the
electron momentum and the second moment of the electron
distribution function. Calculations are performed for the sample
studied in Ref. [21].
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FIG. 2. The physical origin of the decrease of electron viscosity
in the magnetic field (schematics). Two adjacent layers of the
electron fluid move with different velocities Vxðy1Þ and Vxðy2Þ.
The viscous friction is due to the interlayer penetration of
electrons. Without magnetic field (a) the penetration length
(defining the viscosity) is of the order of l2. In the strong
magnetic field B ¼ Bez (b) this length is limited by the cyclotron
radius Rc ≪ l2.
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or by the approximation formula analogous to Eq. (6):

ρ ¼ m
e2n

�

1

τ
þ 1

τ⋆
1

1þ ð2ωcτ2Þ2
�

: ð13Þ

It is seen from Eq. (13) that the decrease of τ2 and fastening
of the relaxation rate 1=τ with temperature leads to broad-
ening and a shift upwards of the magnetoresistance curves
(see Fig. 3). The increase of τ⋆ with temperature results in
the vanishing of negative magnetoresistance. At low
temperatures and high magnetic fields, ωcτ2 ≫ 1, the
Eqs. (7) and (13) yield a finite value of the resistance,
m=e2nτ0, which is related only to the electron momentum
relaxation on disorder in the bulk.
The Hall voltage can be found by integration of Eq. (11)

over y. The first term in the left-hand side of Eq. (11),
proportional to the viscosity coefficient ηxy, is of the order
of ωcðl2=wÞ2V at ωcτ2 ≪ 1 or ωcðRc=wÞ2V at ωcτ2 ≫ 1,
while the second term ωcV is much greater. Thus in the
calculation of the Hall voltage one should take into account

only the second term, and for the Hall coefficient we obtain
the usual result: RH ¼ 1=nec.
The viscosity coefficient ηxy is essential for nonsta-

tionary flows. For example, it is seen from Eq. (9) that the
term proportional to ηxy gives a contribution to dispersion
of the hydrodynamic waves, while ηxx is responsible for
their dissipation. Indeed, if we seek the solution of Eq. (9)
in the wave form Vkðr; tÞ ¼ Ak expð−iωktþ ik · rÞ,
assuming the absence of electric field and bulk momentum
relaxation, we easily obtain

ωk ¼ �ðωc − ηxyk2Þ − iηxxk2: ð14Þ
We now discuss the recent experimental results on

the giant negative magnetoresistance of 2D electrons
[18–21] in light of our theory. Figure 3(a) demonstrates
the experimental magnetoresistance curves obtained in
Ref. [21] for an ultrahigh-quality GaAs sample at different
temperatures. For the same temperatures and magnetic
fields, we calculated magnetoresistance of that sample
within our theory [see Fig. 3(b)]. Herewith we used the
disorder relaxation times τ0, τ2;0 and the amplitudes Aph,
AFl
ee in Eqs. (7) and Eq. (1) in Ref. [29] as fitting parameters.
Although by the appropriate choice of the fitting

parameters we are able to perfectly reproduce the form
of the experimental curves and their evolution with temper-
ature, it is not possible to obtain, in such a procedure, the
absolute values of the sample resistance observed in the
experiments. The only way to obtain the measured magni-
tudes of resistivity within our theory is to replace the
sample width w by some effective width weff < w. This can
be understood in the following way. The sample contains
inhomogeneities which result in the formation of the
conducting channels in the sample with the widths smaller
the sample width w.
Indeed, in the samples where the giant negative

magnetoresistance effect was observed there often exist
large-radius oval defects arising in the process of growth of
the heterostructures [39,40]. The distance d between the
defects varies in the range 20–100 μm, while their radii are
of the order of 20 μm [39].
In vicinities of the defects the hydrodynamic velocity

VðrÞ cannot have a component in the direction
perpendicular to the defect edge. A slowdown of the flow
occurs due to the viscous transfer of the x component of the
electron momentum in the y direction from the regions
between the defects to the regions which are immediately in
front of the defects (in the x direction). So the large-radius
defects lead to momentum relaxation by the mechanism,
analogous to the diffusive scattering on rough sample
boundaries, as well as to formation of the conducting
channels with the widths smaller than w. At the scales of
the order of d, the picture of fluid motion is rather similar to
the Poiseuille flow in a rectangular sample with the width
weff ∼ d. The details of the velocity field VðrÞ are very
complicated, but the relationship for the averaged resistance

FIG. 3. Temperature-dependent magnetoresistance of high-
mobility 2D electrons in the GaAs quantum well experimentally
studied in Ref. [21]. Panel (a) is taken from Ref. [21]. The curves
in panel (b) are drawn according to Eqs. (5) and (12) with the
numerical parameters presented in the main text.
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ϱ ∼
1

τ
þ ηxx

d2
; ð15Þ

analogous to Eq. (13), will sustain (see Ref. [29] for a
qualitative derivation of Eq. (15) and Ref. [34] for its
rigorous derivation and analysis).
In Fig. 3(b) we show the magnetoresistance calculated

with the following fitting parameters: τ0 ¼ 4.5 × 10−10 s,
τ2;0¼1.1×10−11s, Aph¼109s−1K−1, AFl

ee¼1.3×109s−1K−2,
and weff ¼ 10 μm. Herewith the condition of applicability
of the hydrodynamic approach, l2 ≪ weff , is fulfilled at all
the temperatures (see Fig. 1). The used values of Aph and
AFl
ee are in agreement, by the order of magnitude, with the

result of our estimations of the parameters Aph and Aee for
the quantum well studied in Ref. [21].
In conclusion, a hydrodynamic mechanism for 2D

electron transport in a magnetic field has been studied.
We have demonstrated that this mechanism is responsible
for the giant negative magnetoresistance recently observed
in the ultrahigh-mobility 2D electrons in GaAs/AlGaAs
heterostructures.
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