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Topological states of matter are peculiar quantum phases showing different edge and bulk transport
properties connected by the bulk-boundary correspondence. While noninteracting fermionic topological
insulators are well established by now and have been classified according to a tenfold scheme, the possible
realization of topological states for bosons has not been explored much yet. Furthermore, the role of
interactions is far from being understood. Here, we show that a topological state of matter exclusively
driven by interactions may occur in the p band of a Lieb optical lattice filled with ultracold bosons. The
single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both
bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle
level nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the
excitations, carrying a nonzero Chern number. Our work introduces an experimentally realistic strategy for
the formation of interaction-driven topological states of bosons.
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Introduction.—The seminal work of Kane and Mele for
graphene in the presence of a strong spin-orbit coupling [1]
has opened the field of topological insulators and brought
us a deeper comprehension of phenomena like the quantum
Hall effect, which had been known for decades [2]. A
universal classification scheme based on symmetries and
dimensionality has enabled a solid basis for our under-
standing of noninteracting fermionic topological systems
[3–6]. In contrast, interaction-driven topological states of
matter have remained elusive. Topological phases were
originally predicted to occur in lattice models with domi-
nating next-nearest-neighbor interaction [7], a scenario
which appears difficult to envisage in real experiments.
More precise exact diagonalization [8] and density matrix
renormalization group [9] calculations, however, contra-
dicted these mean-field results.
Predictions of topological phases in Dirac-like materials

exhibiting a linear dispersion suffer from the additional
drawback that theses systems are genuinely quantum
critical: because of the zero density of states at the
neutrality point, only perturbations exceeding a certain
critical value are able to induce a topological phase. On the
other hand, systems with a parabolic band-touching point
may become topological for infinitesimal values of the
interaction [10]. A paradigmatic example is Bernal-stacked
bilayer graphene [11], but other cases have also been
identified, and this field has attracted much interest recently
[12,13].
The search for interaction-driven topological systems

has mostly concentrated on electronic condensed matter

[7–10,13,14] or on the equivalent cold-atom fermion
system [12,15,16]. Only recently, the corresponding
bosonic analogs became the subject of theoretical inves-
tigations [17–21]. As for experiments, considerable
progress has been achieved in realizing topological states
with cold atoms (fermions or bosons) in the noninteracting
regime. Examples range from the Su-Schrieffer-Heeger
model [22] to the Harper-Hofstadter model [23,24] or the
long-sought Haldane model [25]. In these systems, topo-
logical features of the bands, like a nontrivial Zak phase,
Berry curvature, or Chern number, characterize the non-
interacting model and interactions play only a marginal role
[26–28]. In this context the intriguing question arises of
how to engineer a parabolic band touching with cold atoms,
because in this case topological features might emerge
exclusively due to interactions. The main difficulty is that
both parabolic bands must have a non-negative curvature in
order to provide a band minimum, where the bosons can be
condensed.
Here, we show that this scenario can be achieved

by employing interacting ultracold bosons in a two-
dimensional Lieb lattice, known as a model of the copper
oxide planes of cuprate superconductors. The desired band
touching arises between the second and third bands at the
M point of the Brillouin zone. We show that with proven
experimental techniques a stable Bose-Einstein condensate
(BEC) can be formed at this high-symmetry point, which
exhibits macroscopic angular momentum and superfluid
plaquette currents, such that time-reversal symmetry is
broken, but translational symmetry is preserved. This
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phase, which turns out to be topologically trivial, is the
bosonic analog of a phase first proposed by Varma to
describe the pseudogap regime of high-Tc cuprates
[29–32]. Surprisingly, when we calculate the band structure
of the Bogolyubov excitations, we find that they exhibit
emergent topological properties that were absent in the
noninteracting system.
Optical lattice.—In contrast to previous realizations of a

Lieb lattice with light-shift potentials [33], our implemen-
tation includes the necessary machinery to prepare atoms in
the second Bloch band, and, hence, to include orbital
degrees of freedom. The Lieb-lattice geometry, depicted in
Fig. 1(a), arises if a unit cell (light blue rectangle in the left-
hand image) with two classes of sites denoted A and B is
translated via a square Bravais lattice. In order to excite
atoms into the second band of this lattice using the
technique demonstrated in Refs. [34,35], additional func-
tionality (henceforth referred to as band swapping) is
required, which allows one to rapidly switch the well
depths of the corner sites A and the bond sites B.
Experimentally, this may be achieved by superimposing
the two potentials

V1ðx; yÞ≡ −V1;0½cos2ðk1xÞ þ cos2ðk1yÞ�;

V2ðx; yÞ ¼ −
V2;0

4
j cosðk2xÞ þ cosðk2yÞj2; ð1Þ

thus obtaining Vðx; yÞ≡ V1ðx; yÞ þ V2ðx; yÞ. Here,
kν ≡ 2π=λν, with λν; ν ∈ f1; 2g denoting the wavelengths
of the light fields forming Vνðx; yÞ and λ1 ≈ 2λ2. As
illustrated in the center and right-hand images of
Fig. 1(a), both potentials V1ðx; yÞ and V2ðx; yÞ represent
simple square lattices, however, rotated with respect to each

other by 45°, and with lattice constants differing by a factor
of

ffiffiffi
2

p
. Indicating their potential minima by red and blue

disks and their potential maxima by gray disks or gray
lines, respectively, Fig. 1(a) immediately clarifies how their
superposition yields the desired Lieb-lattice geometry. By
tuning the ratio V1;0=V2;0 around unity, the A wells can be
tuned to be deeper than the B wells or vice versa. This is
shown in Fig. 1(b), where the potential is plotted for
V1;0=V2;0 ¼ 0.85 and V1;0=V2;0 ¼ 1.17 on the left- and
right-hand sides, respectively.
Experimentally, the required lattice is produced by the

setup shown in Fig. 1(c). Two laser beams with wave-
lengths λ1 and λ2 ¼ 1

2
λ1 þ δλ, both detuned to the negative

side of an atomic transition with δλ corresponding to a few
ten MHz, are retroreflected from the same mirror. The
polarization of the beam at wavelength λ1 is adjusted to be
linear within the lattice plane. Hence, no interference
occurs at the crossing point, where an atomic BEC is
prepared, such that the potential V1ðx; yÞ arises. Similarly,
the beam at wavelength λ2 exhibits linear polarization
perpendicular to the lattice plane, such that maximal
interference at the crossing point yields the potential
V2ðx; yÞ. The two potentials can be precisely positioned
relative to each other (to better than a few nm) by adjusting
δλ and the ratio between the distances L1 and L2 indicated
in Fig. 1(c) [36].
Theoretical model.—We consider the case when the

corner sites (A) are significantly deeper than the bond
sites (B) such that the former host px and py orbitals, while
the latter host s orbitals. The low-lying s orbitals of the
corner sites are neglected. The corresponding minimal
tight-binding Hamiltonian reads

H0 ¼ −t
X
r;α;σ

ðσp†
α;rsrþσeα þ H:c:Þ

− t0
X
r;ρ;σ

ðs†rþσexsrþρey þ H:c:Þ

þ ξp
X
r;α

p†
α;rpα;r þ ξs

X
r;α

s†rþeαsrþeα ; ð2Þ

where t is the nearest-neighbor hopping between s and p
orbitals, t0 is the next-nearest-neighbor hopping between s
orbitals, and ξp and ξs are, respectively, the on-site energies
for p and s orbitals [see Fig. 2(a)]. We will consider ξs ¼ 0
in the remainder of this work. Let us define sα;r ≡ srþeα and
introduce the vector Ψk ≡ ðpx;k; py;k; sx;k; sy;kÞ. In
momentum space, the Hamiltonian can be written as
H0 ¼ P

kΨ
†
kH

0
kΨk, where

H0
k ¼

0
BBB@

ξp 0 −2it~sx 0

0 ξp 0 −2it~sy
2it~sx 0 ξs −4t0 ~cx ~cy
0 2it~sy −4t0 ~cx ~cy ξs

1
CCCA: ð3Þ

FIG. 1. (a) A face-centered square lattice (left-hand image) is
obtained by superimposing the two square lattices shown in the
center and the right-hand images (with λ1 ≈ 2λ2). Colored disks
show potential minima, gray disks or lines show maxima. (b) By
varying the relative depth of the superimposed square lattices, the
relative depth of theA and the Bwells of the resulting Lieb lattice
can be tuned. (c) Experimental realization of a Lieb-lattice
potential with built-in band swapping functionality (see text
for details).
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Here, we have defined ~cx;y ≡ cosðkx;y=2Þ, ~sx;y ≡
sinðkx;y=2Þ and introduced units for which the lattice
constant a ¼ 1. At the high-symmetry points, the low-
est-energy eigenvectors have the form (up to a normaliza-
tion constant) ΨX ¼ ð−iϵ; 0; 2t; 0Þ, ΨX0 ¼ ð0;−iϵ; 0; 2tÞ,
Ψð1Þ

M ¼ ΨX, Ψð2Þ
M ¼ ΨX0 , corresponding to the energy

ϵ ¼ ðξp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16t2 þ ξ2p

q
Þ=2. The M point is twofold

degenerate.
A comparison between the band structure derived

from the Hamiltonian in Eq. (2) and from the experi-
mental potential given in Eq. (1) is shown in Fig. 2(b). The
desired quadratic band touching at the high-symmetry point
M of the Brillouin zone, arising from two bands with non-
negative curvature, may be promptly observed upon
inspection of the figure.
In the presence of contact interactions Us and Up for the

s and p orbitals, respectively, and within the harmonic
approximation, the interaction Hamiltonian can be cast in
the form [37,38]

Hint ¼
Us

2

X
r;α

nsα;rðnsα;r − 1Þ þUp

2

X
r

�
n2p;r −

L2
z;r

3

�
;

ð4Þ

where nsα;r ¼ s†α;rsα;r, np;r ≡ npx;r þ npy;r, and the angular-

momentum operator is given by Lz;r ¼ −iðp†
x;rpy;r−

p†
y;rpx;rÞ. Inspection of the Hamiltonian shows that

repulsive interactions favor a ground state with finite
angular momentum hLz;ri ≠ 0, thus breaking time-reversal
symmetry T .
Ground state.—Lattice systems exhibiting a degenerate

set of minima favor condensation at the high-symmetry
points, as, for instance, found for the kagome lattice [39].
Therefore, we distinguish two types of condensates,
depending on whether the condensation occurs at the
points X − X0 or at the twofold degenerate point M. This

scenario is confirmed by solving the Gross-Pitaevskii
equation in imaginary time, which in addition allows us
to exclude simultaneous condensation at all the three
points. At the momenta corresponding to the high-
symmetry points X, X0, and M, only some orbitals have
a nonvanishing amplitude for the Hamiltonian in Eq. (2).
These considerations lead us to propose the following
ansatz for the condensate wave function:

hpα;ri ¼ ffiffiffiffiffi
ρp

p
eiθαeikα·r;

hsα;ri ¼
ffiffiffiffiffi
ρs

p
eiϕαeikα·ðrþeαÞ: ð5Þ

For the X − X0 condensate, one has kx ¼ X ¼ ðπ; 0Þ and
ky ¼ X0 ¼ ð0; πÞ. For the M condensate, kx ¼ ky ¼ M ¼
ðπ; πÞ. We make a gauge choice: ϕy ¼ 0. Minimization of
the mean-field free energy determines the phases θx ¼ π,
θy ¼ π=2, ϕx ¼ π=2, ϕy ¼ 0, and the mean-field free
energy reads

EMF ¼ −8t ffiffiffiffiffiffiffiffiffi
ρpρs

p þ 4Upρ
2
p=3þUsρ

2
s þ 2ξpρp: ð6Þ

Since the condensates break time-reversal symmetry T ,
each solution is twofold degenerate. The time-reversal
conjugate solution can be obtained by substituting
ϕx → −ϕx and θy → −θy.
The angular-momentum expectation value is hLz;ri ¼

−2ρpð−1Þmþn in the X − X0 phase and hLz;ri ¼ −2ρp in the
M phase, where m and n are integers corresponding to
r ¼ ðm; nÞ. Hence, the overall angular momentum vanishes
for the X − X0 phase but not for the M phase. The X − X0
condensate breaks the translational symmetry of the
Bravais lattice, whereas the M condensate does not (see
Fig. 3). Phase gradients induce superfluid currents. The
bond-current operator is defined as Jμνij ¼ −itijðb†μ;ibν;j−
b†ν;jbμ;iÞ, where b†μ;i is the creation operator for a boson at
site i and flavor or orbital μ and tij is the hopping amplitude
between sites i and j. There are currents only along the
s − s bonds with amplitude jJssj ¼ 2t0ρs.

ey

ex

t

t
a

sx

sy

py
px

(a)

X M

E[ ygren
E

2,cer
]

(b)
-16.3

-16.4

-16.5

-16.6

FIG. 2. (a) Tight-binding lattice model. (b) Comparison be-
tween the tight-binding band structure (dashed blue line) and the
exact band structure (continuous red line) for V1;0 ¼ 10.6 Erec;2

and V2;0 ¼ 9.4 Erec;2. The fitting parameters t ¼ 0.166,
t0 ¼ 0.011, ξp ¼ 0.209 and overall energy shift E0 ¼ −16.367
are given in units of the recoil energy, Erec;2 ≡ ℏ2k22=ð2mÞ, with
m the atomic mass.
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FIG. 3. (a) X − X0 condensate: A pattern of staggered angular
momenta and currents arises. (b) M condensate: Angular mo-
menta are rectified and currents form loops in the elementary
plaquettes (dashed line).
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The ground states may possess nontrivial topological
properties, such as a Hall response. The calculation of the
transverse (Hall) conductivity σxy revealed that this is not
the case (see Refs. [17,40,41] for more details). However,
as we shall discuss below, topological properties arise for
the excitations of the M condensate.
Corrections to the ground state mean-field energy given

by the zero-point fluctuations of the Bogolyubov modes
have also been investigated following the procedure out-
lined in Ref. [39], and we found that the M condensate has
a larger energy compared to the X − X0 condensate, of the
order of 1 pK [41]. This small value makes us confident
that a metastable M condensate could be experimentally
realizable. Nevertheless, the precise estimation of the
condensate lifetime is a highly nontrivial problem, which
we defer to future investigations.
Excitations and topology.—The quadratic band touching

appearing at the M point in the noninteracting spectrum is
protected by inversion and time-reversal symmetry, and it
exhibits a 2π Berry flux [10,12,41]. Upon condensation, the
band degeneracy is lifted because the U(1) symmetry
breaking requires the existence of only one gapless mode,
according to Goldstone’s theorem. Therefore, the band
splitting appearing for the excitations and the further
breaking of time-reversal symmetry can allow for a non-
vanishing Berry curvature and Chern number.
Within the Bogolyubov approximation, the Hamiltonian

can be written as H ¼ H0 þHint ≈ EMF þHBog, with
HBog ¼ 1

2

P
kδψ

†
kH

Bog
k δψk, where we have introduced

the Nambu spinor δψk ¼ ðδpx;k; δpy;k; δsx;k; δsy;k; δp
†
x;−k;

δp†
y;−k; δs

†
x;−k; δs

†
y;−kÞ.

The Bogolyubov Hamiltonian for the M condensate
reads

HBog
k ¼

�
H0

k þH1 Δ
Δ� ½H0

−k þH1��
�
; ð7Þ

where H0
k was defined in Eq. (3), H1 ¼ 8

3
Udiagðρp; ρp;

ρs; ρsÞ − μ14×4,

Δ ¼

0
BBBBB@

2
3
Uρp − 2

3
iUρp 0 0

− 2
3
iUρp − 2

3
Uρp 0 0

0 0 4
3
Uρs 0

0 0 0 − 4
3
Uρs

1
CCCCCA
; ð8Þ

and we have introduced the chemical potential μ and
defined U ≡Up ¼ 3

4
Us within the harmonic approxima-

tion (see Ref. [38]).
The excitation spectrum is obtained by solving

the eigenvalue problem τzH
Bog
k Wi

k ¼ ωi
kW

i
k, where

τz ¼ σz ⊗ 14×4. The normalization of the eigenvectors is

such thatW†
kτzWk ¼ τz andWkτzW

†
k ¼ τz, withWk being

the matrix having the eigenvectors Wi
k in its columns.

The excitation spectrum for the M condensate is shown
in Fig. 4(a). Notice that the lowest branch of the spectrum
became nondegenerate, as a consequence of the U(1)
symmetry breaking. This allows us to calculate the asso-
ciated Chern number generalized for Bogolyubov
Hamiltonians [42], cn ¼ ð1=2πÞ R dkFxyðkÞ, where the
Berry curvature FxyðkÞ reads

FxyðkÞ ¼ ∂kxAyðkÞ − ∂kyAxðkÞ;
Aα ¼ −ihWi

kjτz∂kα jWi
ki: ð9Þ

We numerically calculated the Chern number using the
procedure described in Ref. [43] and we found cn ¼ 1 for
the lowest branch of the spectrum. The Berry curvature for
this branch is shown in Fig. 4(b). The nonvanishing k-space
profile of the Berry curvature is analogous to the one of a
free particle with a quadratic band-touching point with
an explicit time-reversal symmetry breaking [41]. The
fundamental difference is that the time-reversal symmetry
breaking here is emergent and driven by interactions.
Conclusions.—Our results provide a novel paradigm

to realize topological phases of weakly interacting bosons.
By combining the condensation of atoms at a quadratic
band-touching point with the spontaneous time-reversal
symmetry breaking induced by the interactions, one can
generate a superfluid with topological excitations. These
topological excitations are nontrivial bogolons, but they are
still described in terms of a single-particle Fock space [44].
This is in contrast to purely many-body wave functions
with topological properties that lie outside the Altland-
Zirnbauer classification, as discussed in Ref. [45]. The
effect of interactions on the low-lying excitations is
nevertheless crucial for spontaneously generating the topo-
logical properties, which are otherwise absent in the non-
interacting regime.

F
xy

0

1

2

3

4

kx

3 /2

/2
/2 3 /2

ky

X M

2
k

[t]

0

1

2

(a) (b)

FIG. 4. (a) Bogolyubov spectrum. Parameters are chosen in
units where t ¼ 1: t0 ¼ 0.2, ξp ¼ 1.5, U ¼ 0.005. Numerical
minimization of the mean-field free energy under the constraint
ρs þ ρp ¼ 100 yields μ ¼ −1.01882, ρpU ¼ 0.1730, and
ρsU ¼ 0.3269. (b) Berry curvature Fxy of the lowest branch of
the Bogolyubov spectrum. The white spot atM ¼ ðπ; πÞ indicates
that the Berry curvature is not calculated at this point, since this is
the momentum at which condensation occurs.
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According to the topological classification [5], this
model belongs to class D: time-reversal symmetry is
broken and particle-hole symmetry is intrinsically present
in the Bogolyubov description. Indeed, particle-hole sym-
metry is represented by the operator C ¼ τxK, where
τx ¼ σx ⊗ 14×4 andK is the complex conjugation operator,
acting as CτzH

Bog
k C† ¼ −τzH

Bog
−k , with C2 ¼ 1. A realiza-

tion of a similar class in bosonic systems has been recently
proposed for a kagome lattice of photonic crystals, where a
pairing term that breaks U(1) and time-reversal symmetry is
introduced by light squeezing [46].
In our model, instead, interactions induce the symmetry-

breaking mechanism that generates the topological features
of the excitations. In particular, the nonvanishing Berry
curvature characterizes an anomalous Hall effect for the
excitations and affects the collective modes of the gas
[47,48]. It may be directly observed with the interfero-
metric techniques demonstrated in Refs. [22,25,49–51],
while the excitation spectra could be measured by momen-
tum-resolved Bragg spectroscopy [52].
By diagonalizing the spectrum in a cylindrical geometry,

we found the existence of excitations localized at the two
edges of the cylinder, as expected from the bulk-boundary
correspondence [see red line in Figs. 5(a) and 5(b)]. The
observation of these finite-size effects could be imple-
mented by using an optical box trap cutting the system
along the symmetry axes [53]. The absence of an overall
true gap would compromise the detection of the edge states
in the presence of disorder, which, however, should not be a
problem in the light-shift potential of an optical lattice,
since these systems are inherently clean.
Finally, we want to recall that the ground state of the

model investigated here bears strong similarities with the
Varma phase, first proposed for describing the pseudogap
regime of high-Tc superconductors [29–32]. Our findings
also open possibilities for new exotic states of bosons in the
strongly interacting regime [18], where an insulating Mott
phase would be characterized by a gap and may also
possess topological features [28,54].
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