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Theoretical models of low-energy (d, p) single-neutron transfer reactions are a crucial link between
experimentation, nuclear structure, and nuclear astrophysical studies. Whereas reaction models that use
local optical potentials are insensitive to short-range physics in the deuteron, we show that including the
inherent nonlocality of the nucleon-target interactions and realistic deuteron wave functions generates
significant sensitivity to high n-p relative momenta and to the underlying nucleon-nucleon interaction. We
quantify this effect upon the deuteron channel distorting potentials within the framework of the adiabatic
deuteron breakup model. The implications for calculated (d, p) cross sections and spectroscopic
information deduced from experiments are discussed.
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A universal feature of models of the nucleon-nucleon
(NN) interaction is a strong repulsion at small NN separa-
tions. In atomic nuclei, this induces correlations between
nucleon pairs at high relative momenta [1], contributes to a
reduction in the occupancies of nuclear single-particle states
near the Fermi surfaces, and severely complicates practical
computations of nuclear properties and observables.Modern
theoretical nuclear physics methodologies attempt to trans-
form this original, strongly correlated many-body problem
into one where the difficulties due to short-range repulsion
are much reduced. A number of such approaches, that
suppress explicit high-momentum components, have been
proposed [2,3] and applied [4] to model NN interactions—
such as derived from QCD-inspired chiral effective field
theories (EFTs) [5,6].
Transforming away explicit high-momentum compo-

nents through a softening of the NN interaction is often
justified by assertions that low-energy observables are
insensitive to these components [7,8]. In this Letter we
show that a very important class of nuclear reactions used
for spectroscopic studies of nuclei, namely, low-energy
Aðd; pÞB reactions, can exhibit significant dependence on
high n-p relative momenta. Specifically, this sensitivity is
enhanced when including both the D-state component of
the deuteron wave function ϕ0 (the NN tensor force) and
the inherent nonlocality of nucleon-nucleus optical poten-
tials [9] in describing the deuteron-target (d-A) system in a
model that accounts for deuteron breakup. This sensitivity
challenges both the quantitative results and interpretation of
spectroscopic studies of data from conventional, local
Aðd; pÞB reaction model analyses.
A strong indication of a possible high n-p momentum

sensitivity of theAðd; pÞB reactionwas seen in a recent study
[10,11] that investigated the adiabatic model d-A potential,
UdA [12], when including nonlocal nucleon-target (N-A)

optical potentials. There, for N ¼ Z nuclei (and in leading
order) it was shown that, if constructing UdA from local
phenomenological n-A and p-A potentials, these potentials
should be evaluated at an energy shifted by ΔE from that
which is usually assumed, namely, half the incident deuteron
energy Ed. This energy shift was shown to be related to the
following measure of the n-p relative kinetic energy, Tnp,
within the range of the n-p interaction Vnp

hTnpiV ¼ hϕ0jVnpTnpjϕ0i=hϕ0jVnpjϕ0i≡ hϕ1jTnpjϕ0i;

where we have defined jϕ1i ¼ Vnpjϕ0i=hϕ0jVnpjϕ0i.
Determined by the properties of the 3S1 − 3D1 NN channel
at small n-p separations, and, hence, ofDðkÞ ¼ hkjVnpjϕ0i
at high n-p relative momenta, see Fig. 1, the integrand of
hTnpiV is NN-model dependent. This NN-model depend-
ence, driven principally by high n-p relative momenta, will
affect Aðd; pÞB reaction observables.
The earlierΔE value of Ref. [11] was obtained assuming

the purely attractive, phenomenological central Hulthén
NN interaction and S-state wave function [13], whereas
realistic deuteron wave functions have a modest D-state
component with probability PD ≈ 4%–7%. Importantly
however, for realistic model wave functions the matrix
elements hϕ0jVnpjϕ0i entering hTnpiV have D-state frac-
tions PD ≈ 40% (see Table I). The NN-model dependence
and high n-p momentum components of Vnpϕ0 in Fig. 1
have implications for calculations of UdA.
In this Letter we show that these high n-p momentum

effects onUdA are considerably greater than is suggested by
the modestPD values of realistic wave functions.We present
exact calculations of the nonlocal adiabatic potential UdA
from nonlocal nucleon-target optical potentials and realistic
(SþD state) deuteron wave functions. We quantify these
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effects of highn-pmomenta on the local-equivalent potential
to UdA, and on calculated Aðd; pÞB cross sections, and
assess their potential impact on spectroscopic information
deduced from transfer reaction data.
We discuss the Aðd; pÞB reaction in the context of the

three-body reduction of the many-body transition ampli-
tude [14–16], which retains deuteron breakup effects, i.e.,

Tðd;pÞ ¼
ffiffiffiffiffiffiffiffi
C2S

p
hχð−Þp ϕnjVnpjΨðþÞ

d i: ð1Þ

Here ΨðþÞ
d ðR; rÞ is the (three-body) wave function of the

Aþ nþ p system with an incident deuteron boundary

condition, r and R are the n-p and d-A separations, and χð−Þp

and ϕn are the distorted and bound wave functions of
the proton and neutron in the final state. C2S is the

spectroscopic factor. It has been shown [12,17] that
Tðd;pÞ converges very rapidly if Ψd is expanded in the
Weinberg states basis of the n-p system, and that Tðd;pÞ is
well described by retaining only the leading term. In this
limit, the so-called adiabatic distorted waves approximation
(ADWA), ΨdðR; rÞ → χdAðRÞϕ0ðrÞ, and the d-A distorting
interactionUdA that generates the χdA is calculated from the
n-A and p-A optical potentials using

UdA ¼ hϕ1jðUnA þ UpAÞjϕ0i: ð2Þ

Thus, Vnp enters Tðd;pÞ both (i) explicitly, as the transition
interaction in Eq. (1), and (ii) implicitly, within the
adiabatic deuteron distorting potential UdA, that generates
the distorted waves χdA.
We consider the followingNN model descriptions: (i) the

S-state Hulthén interaction [13], (ii) the phenomenological
SþD-state Reid soft-core (RSC) [18] and Argonne v18
(AV18) [19] models, (iii) the meson-exchange CD-Bonn
model [20], and (iv) very recent next-to-next-to-next-to-next
leading order (N4LO) χEFT descriptions, for five different
regulators [6]. In low-energy (and low momentum transfer)
reactions, Tðd;pÞ is insensitive to the use of different model
Vnp in the transition interaction. The S-state part of the
transfer vertex DðrÞ ¼ hrjVnpjϕ0i enters via its volume
integral, the zero-range normalization constant, D0, and its
finite-range parameter κ [21]. The near equality of these D0

for the NN descriptions (i)–(iv) above is shown in Table I.
Similarly, all range parameters κ agree to within 4%. The
D-state component ofDðrÞ, quadratic in the n-pmomentum
for small momenta [22], has a minimal effect on low energy
(d, p) cross sections [23,24] and is not included. Our focus
here is the sensitivity of UdA to the underlying NN model
description, which then enters Tðd;pÞ through the χdA.
In the following we will present results for UdA and

(d, p) cross sections in the case of the 26Alðd; pÞ27Al
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FIG. 1. Momentum space behaviors of the S- and D-state
components of DðkÞ ¼ hkjVnpjϕ0i for the NN potential models
of Table I. The band for χEFT corresponds to the range of
regulators in Table I.

TABLE I. D-state percentages PD and PD of hϕ0jϕ0i and hϕ0jVnpjϕ0i, respectively, volume integrals D0 and
finite-range parameters κ of the transfer vertex DðrÞ, and short-ranged n-p kinetic energy hTnpiV for the different
NN-model interactions of the text. The χEFT wave functions use the different regulators shown. The energy shifts
ΔE, calculated for the dþ 26Al system at Ed ¼ 12 MeV, are computed using the earlier lowest-order methodology
of Secs. IVA and IV B of Ref. [11].

PD PD D0 κ hTnpiV ΔE
NN Model (%) (%) (MeV fm

3
2) (fm−1) (MeV) (MeV)

Hulthén 0 0 −126.15 1.38 106.6 31.2
Reid soft core 6.46 39.7 −125.19 1.34 245.8 74.6
Argonne V18 5.76 39.4 −126.11 1.32 218.0 66.2
CD-Bonn 4.85 32.6 −126.22 1.33 112.5 43.9
χEFT: 0.8 fm 4.19 17.4 −126.17 1.34 247.2 71.6
χEFT: 0.9 fm 4.29 19.7 −126.22 1.35 190.1 64.0
χEFT: 1.0 fm 4.40 22.2 −126.32 1.36 154.6 57.0
χEFT: 1.1 fm 4.74 26.1 −126.39 1.37 122.6 50.4
χEFT: 1.2 fm 5.12 29.6 −126.50 1.38 88.2 44.2
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reaction, recently studied in connection with the destruction
of 26Al in Wolf-Rayet and asymptotic giant branch stars
[25,26]. Our calculations of Tðd;pÞ treat the transition
interaction in zero-range approximation. The (d, p) reaction
calculations are carried out using the transfer reactions code
TWOFNR [27]. We use the systematics of nonlocal nucleon
potentials forN ¼ Z targets proposed byGiannini and Ricco
(GR) [28] and a conventional parameter set, r0 ¼ 1.25 fm,
a0 ¼ 0.65 fm, Vso ¼ 6 MeV, for the Woods-Saxon poten-
tials that generate the neutron bound-state wave functions.
For orientation, we first consider the case when the

nucleon optical potentials UNA are assumed local. UdA
is then given by the Johnson-Tandy expression of Eq. (2).
As the function ϕ1 is of short range, taking its zero-range
limit yields the Johnson-Soper potential [29], UJS

dAðRÞ ¼
UnAðRÞ þ UpAðRÞ, the sum of the nucleon potentials
evaluated at the deuteron center-of-mass position. Thus,
in this limit,UdA is independent of the NN interaction. This
sensitivity returns when computing the full Johnson-Tandy
expression but, for the realistic SþD-state deuteron wave
function models, the depths of the calculated real and
imaginary parts of UdA at the nuclear surface are found to
differ by less than 1.5% and 3.7%, respectively, for
different realistic NN-model choices. The ðd; pÞ cross
sections, σðd;pÞ, calculated using the same zero-range
parameter D0 to isolate the effects of changing the NN
interaction within UdA, changed by less than 0.6%. If we
completely neglect deuteron breakup effects, by using the
Watanabe model [30], then ϕ1 → ϕ0 in Eq. (2) and there is
further reduction in the sensitivity to the NN model choice
as UWat

dA is now determined predominantly by the long-
ranged parts of ϕ0 common to all models. The σðd;pÞ
sensitivity to the NN models in this no-breakup limit
is ≤ 0.4%.
Until very recently, all ADWA calculations have been

performed assuming the UNA are local. We now calculate
Tðd;pÞ assuming: (a) nonlocality of the nucleon-target
potentials UNA, and (b) the different NN model descrip-
tions, including S- and D-state deuteron wave functions, in
constructing UdA. The adiabatic deuteron distorting poten-
tial is now nonlocal, UdAðR;R0Þ. This is calculated in the
heavy target limit (A → ∞) of Eq. (12) of Ref. [11], the
explicit expression for Eq. (2) when the nucleon potentials
UnA and UpA are nonlocal. A new feature of these
calculations is that the deuteron D state is included. The
deuteron distorted waves χdA now satisfy the integro-
differential equation

½TR þ UCðRÞ − Ed�χdAðRÞ

¼ −
Z

dR0UdAðR;R0ÞχdAðR0Þ≡ −SðRÞ; ð3Þ

whereUCðRÞ is the Coulomb interaction, assumed to act on
the deuteron center of mass. We use the analogous formula

for the proton distorted waves χp. The nonlocality of the
UNA is taken to be of Perey-Buck form [28,31]. The spin-
orbit contribution is neglected. We solve Eq. (3) iteratively,
after partial-wave expansion, and the numerical deuteron
and proton channel partial-wave radial wave functions are
read into the code TWOFNR [27]. Full details of this
formalism and procedure will be presented elsewhere
[32]. We note that, in the presence of the deuteron D
state, UdA includes off-diagonal (second-rank spin-tensor)
terms. These are calculated but have negligible effect on the
calculated (d, p) cross sections, so emphasis here is on the
changes to the real and imaginary central terms of UdA.
The real and imaginary central terms of the trivially

equivalent local potentials (TELP) to the nonlocal
UdAðR;R0Þ, defined as SlðRÞ=χdA;lðRÞ, are presented in
Fig. 2 for the different NN models of Table I. These TELPs
are the same in each partial wave but their depths show a
significant NN-model dependence. The essential features
of these TELP to UdA from the all-order numerical
calculations can be compared with the previously reported
local-equivalent description [11]. That approach, using a
Taylor series expansion of the Perey-Buck nonlocal form
factor, can, in principle, be treated to arbitrary order. In
leading order, the effects of the high n-p momenta enter as
a shift ΔE, to be added to Ed=2, for the energy at which the
n-A and p-A potentials should be evaluated in constructing
UdA. The hTnpiV values and the calculated ΔE values for
the dþ 26Al system at Ed ¼ 12 MeV (as in Ref. [26]) from
our different NN models are shown in Table I. hTnpiV is
maximal for the AV18 and RSC phenomenological poten-
tials, being twice as large as for the CD-Bonn model. The
values for the different χEFT models differ by almost a
factor of 3, and increase with decreasing value of the
regulator radius. The values approach those of the phe-
nomenological models for the smaller regulator radii.
The corresponding energy shifts ΔE are ∼70 MeV for
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FIG. 2. Trivially equivalent local deuteron-target potentials for
the dþ 26Al system at 12 MeV computed using the different NN
models of Table I. The band for χEFT corresponds to the range of
regulators shown in Table I.
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the phenomenological NN models, compared to a shift of
31 MeV for the S state only model. The result, when using
realistic deuteron wave functions, is an increase in the
energy shift ΔE of order 10–40 MeV. For the energy
dependence of the depth of the real GR optical potential
this translates into a reduction in the real depth of the
deuteron central potential of ≈2–18 MeV, consistent with
the TELP changes in the full calculations, in Fig. 2.
The high n-p momentum sensitivity in the TELPs is

reflected in the calculated cross sections for 26Alðd; pÞ27Al
at Ed ¼ 12 MeV, shown in Fig. 3, and depends on the
transferred orbital momentum l and neutron separation
energy to each 27Al final state. The effects for the l ¼ 0, 1
transfers are found to be of order 5%–10% in the angular
region of the reported experimental data. For the l ¼ 2

transfer component to the Jπ ¼ 9=2þ state at Ex ¼
7.806 MeV—the analog of the astrophysically important
state in 27Si—the effects on the cross section are
20%–50%, exceeding the current experimental uncertain-
ties, with implications for the deduced l ¼ 0, 2 admixture
and spectroscopic factors for this state. A fully quantitative
analysis of these effects on the deduced admixture and
comparison with the results of Ref. [26] will be presented in
Ref. [32]. An even stronger dependence, of 20%–200%, is
observed for the l ¼ 2 transition to the 27Al ground state.
Here the interpretation of experimental data would differ
drastically from that using a conventional local potential
analysis.
In summary, calculations of low-energy (d, p) reactions

are presented that include both realistic deuteron wave
functions and nonlocality of the nucleon-target optical
potentials. We have demonstrated that calculations are
sensitive to the NN model used, through their different
high n-pmomentum content. This sensitivity only emerges
when nonlocal optical nucleon potentials are used to
construct the adiabatic deuteron channel potential, which
accounts for deuteron breakup effects. The high n-p
momenta in realistic SþD-state deuteron wave functions
drive significant reductions to the depths of the deuteron-
channel potential and, in some cases, increases in the
calculated (d, p) cross sections. Here a Perey-Buck form
was assumed for the nucleon nonlocality, but similar effects
are anticipated if using nonlocal nucleon potentials derived
from microscopic dynamical calculations. The results
presented imply a significant uncertainty in conventional
local (d, p) reaction analyses. Given the observed high-
momentum sensitivity, it would also be of interest to revisit
the convergence properties of the Weinberg states’ expan-
sion of the (d, p) transition amplitude in the presence of
nucleon nonlocality.
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