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We show that it is possible to significantly reduce rank 2 tensor shifts of a clock transition by operating at
a judiciously chosen magnetic-field-insensitive point. In some cases shifts are almost completely
eliminated making the transition an effective J ¼ 0 to J ¼ 0 candidate. This significantly improves the
feasibility of a recent proposal for clock operation with large ion crystals. For such multi-ion clocks,
geometric constraints and selection rules naturally divide clock operation into two categories based on the
orientation of the magnetic field. We discuss the limitations imposed on each type and how calibrations
might be carried out for clock operation.
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The realization of accurate, stable frequency references
has enabled important advances in science and technology.
Increasing levels of accuracy and stability continue to be
made with atomic clocks based on optical transitions in
isolated atoms [1–9]. However, in the case of single ion
clocks, further improvements in accuracy are hindered by
their relatively low stability, which makes averaging times
prohibitively long.
Recently, we have shown that ion clock candidates with a

negative differential scalar polarizability Δα0 could operate
with large numbers of ions by utilizing a magic radio-
frequency (rf) trap drive at which micromotion shifts cancel
[10]. Of the candidates reported in the literature that have
Δα0 < 0, Bþ [11], Caþ [11], Srþ [11], Baþ [12], Raþ [12],
Er2þ [13], Tm3þ [13], andLuþ [13], all but one involve clock
states with J > 1=2, which introduces further perturbations
of the clock transition from rank 2 tensor interactions.
Methods used to cancel these shifts involve averaging over
multiple transitions [14–16], or multiple field orientations
[17]. In the case of many ions, this leads to inhomogeneous
broadening, which imposes practical limitations to the probe
interrogation time and the number of ions one can use [10]. It
is therefore of interest to explore alternative methods to deal
with shifts arising from this class of interactions.
Here, we focus on those Δα0 < 0 candidates with an

upper D state, specifically Caþ, Srþ, Baþ, Luþ, and Lu2þ.
We show that shifts from rank 2 tensor interactions can be
practically eliminated by operating at a judiciously chosen
field-insensitive point, at which the linear dependence of
the transition frequency on the magnetic field vanishes.
In the presence of a magnetic field, states are mixed through
the Zeeman interaction, which alters the influence of rank 2
tensor interactions relative to the unmixed values. By
example, we illustrate that each candidate has at least
one clock transition that becomes field insensitive at a point
at which rank 2 perturbations are substantially diminished.

The case of doubly ionized lutetium has not yet been
considered as a viable clock candidate so we also include
relevant clock considerations for this ion.We note that one is
at liberty to define a clock frequency as the frequency of the
experimentally convenient field-insensitive transition. In
this case there is no need to extrapolate to a zero field but
merely a need to quantify the root-mean-square deviations
from the field-insensitive point.
For fixed J, the Zeeman interaction is given by

Hz ¼
μBB
ℏ

ðgJJz þ gIIzÞ ð1Þ

with matrix elements

hðIJÞF0; mFjHzjðIJÞF;mFi
¼ ðgJ − gIÞμBBð−1ÞJþIþ1þmFJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2F0 þ 1Þð2F þ 1Þ
p

×

�
F F0 1

J J I

��
J 1 J

−J 0 J

�−1� F 1 F0

−mF 0 mF

�

þ gImFμBBδF;F0 ; ð2Þ
where we have included IJ in the state notation to specify
the order of coupling I and J. The Zeeman interaction
preserves mF and eigenstates can be found by diagonal-
izing the Hamiltonian restricted to a manifold of fixed mF.
Provided perturbations from rank 2 tensor interactions
remain small relative to the spacing between energy levels,
shifts can be calculated as an expectation value using the
new eigenstates. At low field, a rank 2 perturbation factors
into three terms: a state-dependent scalar coefficient
depending on the angular momentum quantum numbers
typically on the order of unity, which we refer to as the shift
coefficient and denote by C2, a scalar parameter depending
on the properties of the atom that determines the coupling
strength of the interaction for the particular fine structure
level, and a geometry dependent term that depends only on
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the strength of the applied fields and their orientation
relative to the quantization axis. Since the Zeeman inter-
action preserves mF, this separation remains intact pro-
vided there is no accidental near degeneracy with
neighboring Zeeman manifolds. However, C2 must prop-
erly take into account the mixing induced by the Zeeman
interaction. For a given state, the coefficient is determined
by the expectation value of the mF-dependent matrix with
matrix elements given by

HF0;F ¼ ð−1ÞJþIþmF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2F0 þ 1Þð2F þ 1Þ
p

×

�
F F0 2

J J I

��
J 2 J

−J 0 J

�−1

×

�
F 2 F0

−mF 0 mF

�

: ð3Þ

Matrix elements of the tensor polarizability are given by

hF0; mFjHEjF;mFi ¼ −
1

4
HF0;Fα2;Jh3E2

z − jEj2i; ð4Þ

where α2J is the frequency dependent tensor polarizability
for the fine-structure level of interest, and h·i denotes a time
average. Similarly, matrix elements for the quadrupole
operator are given by

hF0; mFjHQjF;mFi
¼ HF0;FΘðJÞA½ð3cos2β − 1Þ − ϵsin2βðcos2α − sin2αÞ�;

ð5Þ
where ΘðJÞ is the quadrupole moment of the fine structure
level of interest, A and ϵ characterize the strength of the
applied field gradients, and α and β are the Euler angles
determining the orientation of the electric field gradient
with respect to the quantization axis [17]. We note that
general matrix elements for the polarizability are given in
Ref. [18] and a slight generalization of the treatment given
in Ref. [17] can be used to show they have the same form
for the quadrupole interaction. The matrix elements given
in Ref. [19] differ from those given in Ref. [18] due to a
different ordering of I and J.
For a given atom, it is a simple matter to exhaustively

search for field-insensitive points of the clock transition and
determine C2 by the expectation value of the matrix given
in Eq. (3). In Fig. 1, we illustrate the near coincidence of a
field-insensitive point and a zero shift coefficient for 43Caþ.
Further examples for each candidate are given in Table I
where we give the zero-field states associated with the
transition, the shift coefficient, and the quadratic Zeeman
shift at the field-insensitive point. The table is by no means
exhaustive, at least for some of the candidates, and we have
listed the most promising transitions for each.
Where possible, analysis is based on experimentally

determined hyperfine splittings and this is the case for
43Caþ, 137Baþ, and 175Luþ. For 87Srþ, the experimental

value in Ref. [21] for the S1=2 level is used but calculations
given in Ref. [22] are used for the D3=2 level. Similarly, we
have relied upon calculations of the hyperfine structure for
175Lu2þ [25]. For 176Luþ, we have used experimental
values for 175Luþ to determine the hyperfine A and B
coefficients and rescaled them based on measured nuclear
magnetic dipole and electric quadrupole moments. The
results given in Table I have varying levels of sensitivity to
calculated values. However, in general, the Hamiltonian
describing Zeeman mixing of the upper state can be scaled
by the largest separation of the hyperfine states. This
simply sets a scale for the magnetic field and does not
change the form of the eigenenergies and eigenstates as a
function of the scaled field. In as much as the hyperfine
splittings are described by the hyperfine A and B coef-
ficients, the rescaled Hamiltonian then depends only on the
ratio B=A and this dependence is typically rather weak.
Moreover, for relevant field values, the ground-state ener-
gies are well described by a comparatively weak quadratic
form. Hence, the existence of such coincident points is
reasonably robust to small changes in the calculated
hyperfine structure.
The case of singly ionized lutetium is unique in that it is

the only candidate that has no hyperfine structure in the
ground state. The simple structure of the 3D1 level does not
yield any coincident points and, in fact, the field-insensitive
points typically coincide with extrema in the values of C2.
This is also the case for 175Luþ on the 3D2 line but it just so
happens the extremal value of C2 is also small. However,
this is not the case for 176Luþ on the 3D2 line. In this case
there is a much stronger variation of C2 with the magnetic
field and it has a higher sensitivity to changes in the
hyperfine structure compared to other transitions listed in
the table.
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FIG. 1. The magnetic field dependence of the jS1=2; 4;−3i to
jD3=2; 5;−3i transition in 43Caþ. The solid curve shows the
frequency dependence of the transition relative to the zero-field
value with the vertical line marking the field-insensitive point of
approximately 1.28 mT. The dashed curve shows the field
dependence of the corresponding shift coefficient with the
horizontal line marking the intercept at the field-insensitive point
giving a shift coefficient C2 ≈ −5.8 × 10−5.
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The case of 43Caþ offers a unique possibility at a low
field due to the nuclear spin of I ¼ 7=2. In this case the 6J
symbol in Eq. (2) vanishes for F ¼ F0 ¼ 3. Thus, the g
factor for the F ¼ 3 upper state is given by the nuclear g
factor gI. It is also the case that the expectation value of any
rank 2 tensor vanishes for an angular momentum state
j3;�2i. Hence, at low fields, these states are inherently free
of any significant Zeeman, quadrupole, or tensor polar-
izability shifts. Furthermore, the quadratic Zeeman shifts of
the j3;�2i states are anomalously small owing to the small
hyperfine B coefficient for 43Caþ. Indeed, the quadratic
shift for the transition j4; 0i to j3;−2i is almost entirely due
to the ground state. With the very small linear Zeeman shift,
the transition becomes field insensitive at approximately
50 μT. This field gives a small amount of Zeeman mixing,
which accounts for the shift coefficient of −0.006 given in
the table.
The result for the j4;−3i ↔ j5;−3i transition in 43Caþ

is also a consequence of the I ¼ 7=2 nuclear spin. In this
case the difference in g factors for the two states is just 0.01.
This provides a field-insensitive point at low field, which
can be treated within the framework of perturbation theory.
Neglecting the quadratic dependence of the ground state,
the magnetic field value at the field-insensitive point is
linear in the hyperfine separation of the F ¼ 4 and 5 upper
levels. To the same approximation, the mixing of the two
upper levels at the field-insensitive point is independent of
the hyperfine separation and the zero-field shift coefficient
of C2 ¼ −1=15 is shifted to ≈ − 0.0083. Including the
quadratic dependence of the ground state decreases the
quadratic dependence of the transition and increases
the magnetic field at the field-insensitive point. The
associated increase in Zeeman mixing brings C2 to approx-
imately zero. The same calculation applies to the corre-
sponding transition in 175Lu2þ with a sign change in m
corresponding to a sign change of the nuclear magnetic
moment. Similar reasoning also applies to the j4;−3i ↔
j3;−1i transition in 87Srþ although this transition involves

a stronger mixing of the upper states. Consequently, for all
three of these transitions, the C2 coefficient is insensitive to
exact values of the hyperfine splittings.
In the sequence of alkaline-earth ions, the differential

scalar polarizability Δα0 becomes increasingly negative
with increasing atomic mass. Doubly ionized lutetium takes
the role of a heavy alkaline-earth-like ion but the extra ion
charge offsets this trend. From published matrix elements
[27], we estimate Δα0 ≈ −20.7 with a tensor contribution
of α2;J ¼ −5.2 where both results are given in atomic units.
As the scalar polarizabilities of the ground and excited
states are significantly different (28.0 and 7.3, respec-
tively), we expect the estimate of Δα0 to be reasonable.
Using the flexible atomic code [28], we have calculated the
lifetime of the D3=2 level to be approximately 160 s. The
long lifetime, together with the near vanishing shift
coefficient of the j4;−3i ↔ j5;−3i transition, makes this
a particularly interesting candidate for a multi-ion clock.
In the multi-ion clock proposal [10], clock interrogation

along the rf null axis of a linear Paul trap is required to
avoid micromotion-induced depletion of the probe cou-
pling. For the E2 transitions considered here, selection
rules constrain the orientation of the magnetic field that one
can use. This leads to two types of operation: one in which
the field is aligned to the trap axis, and the other in which it
is rotated by a nonzero angle. The former only applies to
those transitions with jΔmj ¼ 1 but in either case, the
ultimate performance will depend on the alignment of the
magnetic field with respect to the trap axis.
With the Euler angles α and β as defined in Eq. (5), the

tensor polarizability shift due to an rf electric field with
amplitude E ¼ ðEx; Ey; 0Þ is given by

δν

ν
¼ −

C2α2;J
4hν

�

−
1

4
ð3cos2β − 1ÞjEj2

þ 3

4
sin2β½cos 2αðE2

x − E2
yÞ − 2 sin 2αExEy�

�

; ð6Þ

TABLE I. Field-insensitive transitions at which the shift coefficient, C2, that scales the rank 2 tensor perturbations,
is small. Transitions are identified by their zero-field quantum numbers. All transitions are S1=2 to D3=2 with the
exception of Luþ which is an 1S0 to 3D2 transition. The value of the magnetic field, B0, at which the transition
becomes field insensitive is given in column 3, and the quadratic dependence in given in column 4. In the final
column references from which the hyperfine structure was determined are given.

Element Transition B0 (mT) αZðkHz=mT2Þ C2 References
43Caþ j4; 0i ↔ j3;−2i 0.051 58.8 −0.006 [20]
43Caþ j4;−3i ↔ j5;−3i 1.28 −159 −5.8 × 10−5 [20]
87Srþ j4;−3i ↔ j3;−1i 5.34 304 −0.004 [21,22]
87Srþ j4; 0i ↔ j4; 0i 12.8 69.0 0.030 [21,22]
137Baþ j2; 1i ↔ j2; 0i 53.1 −70.0 −0.066 [23,24]
175Lu2þ j4; 3i ↔ j5; 3i 20.8 9.7 −5.6 × 10−4 [25]
175Lu2þ j4;−3i ↔ j2;−2i 73.6 30.8 0.005 [25]
175Luþ j7=2;−1=2i ↔ j9=2;−1=2i 56.6 22.1 −0.035 [26]
176Luþ j7;−5i ↔ j6;−5i 521 29.8 −0.007 [26]
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where we have assumed the rf field to be purely transverse
to the trap axis as considered in Ref. [10]. In a Coulomb
crystal, the second term in Eq. (6) has a mean value of zero,
provided hE2

xi ¼ hE2
yi, and gives a number-dependent

inhomogeneous broadening of the line. In a spherically
symmetric crystal, the broadening would be symmetric and
would not give rise to additional shifts associated with
changes to the line shape. Small differences in hE2

xi and
hE2

yi could be tolerated by setting α ¼ π=4, which means
the projection of the magnetic field on the xy plane is at 45°
to both the x and y axis. The first term in Eq. (6) has a mean
value proportional to N2=3. This gives rise to a number-
dependent shift of the transition.
When the field is aligned to the trap axis, the number-

dependent broadening can be compensated by a slight
adjustment of the magic rf frequency [10]. The only other
broadening mechanism is from the crystal-induced quadru-
pole shifts, which are independent of number and heavily
reduced by C2. From the analysis given in Ref. [10] and the
values of C2 given in Table I, this broadening would be
∼1 mHz and likely not observable. In practice, one would
simply increase the number of ions, tuning the rf frequency
to eliminate variations in the clock frequency with
number, and tuning the field alignment to null any
observable number-dependent broadening. Hence, this
operation allows for arbitrary levels of stability with only
a residual quadrupole shift induced by dc electric field
gradients. Since the magnetic field would be calibrated to
the trap axis, the dominant contribution from the dc
confinement could be calibrated by measuring the trap
frequencies. We note that for C2 ∼ 1 typical quadrupole
shifts are ∼1 Hz [17]. For the candidates given in Table I,
we would then anticipate fractional frequency shifts of
≲10−17, which should easily allow uncertainties below
10−18. Contributions from stray fields need not be aligned
with the trap axis but we would expect these to be
significantly smaller than the applied fields.
Off-axis operation is needed when jΔmj ¼ 0, 2.

Assuming the magic rf frequency has been precalibrated
by another method, the orientation of the magnetic field can
then be tuned so that 3 cos2 β − 1 ¼ 0 by eliminating any
observable number-dependent shifts in the clock frequency.
From Eq. (5), the magnetic field would also be oriented
such that the residual quadrupole shift arising from the dc
confinement fields is also canceled. Errors in the value of
the magic rf frequency will lead to errors in field alignment
and a shift of the clock frequency from the dc confinement
field. Further quadrupole shifts from stray dc fields will
arise as before and we would expect similar levels of
inaccuracies as the previous case.
For off-axis operation, number-dependent broadening

limits the achievable stability. The broadening scales
quadratically with the size of the crystal, which scales as
N1=3. The maximum interrogation time then scales asN−2=3

leading to an instability with a weak N−1=6 scaling. For all

practical purposes this can be considered constant once the
broadening begins to degrade the Ramsey fringe or the line
shape. For the spherically symmetric case considered in
Ref. [10], the broadening is characterized by

Δν ¼ C2

4

�
�
�
�

α2;J
Δα0

�
�
�
�

�
Z2αℏωz

mc2

�
2=3

νN2=3; ð7Þ

where α is the fine structure constant, Z is the charge
number of the ion, ωz is the trapping frequency along the
axial direction, and ν is the clock frequency. Based on
simulations, the fringe contrast is reduced to ∼80% for a
Ramsey time of 1=ð2πΔνÞ. Thus, Eq. (7) provides an
effective bound on the number of ions for a given inter-
rogation time. The dependence on Δα0 arises because it
determines the magic rf frequency, which, in turn, deter-
mines the strength of the electric field needed for a
particular confinement. In terms of broadening, this favors
candidates in which the ratio α2;J=Δα0 is small. For 43Caþ

and 175Lu2þ these considerations are largely irrelevant with
the very small C2 value providing an effective J ¼ 0 to
J ¼ 0 transition. Indeed, for 175Lu2þ, a Ramsey time of 1 s
would limit the number to N ≳ 106 with an instability
σð1sÞ < 10−18, where we have taken ωz ¼ 2π × 200 kHz.
Clearly, other factors will limit the stability well before
such extremes are reached.
In conclusion, we have shown that field-insensitive

points of clock transitions may be found at which pertur-
bations from rank 2 tensor interactions are significantly
diminished. In the case of 175Lu2þ, this approach provides a
clock candidate that is essentially field free except for a
9.7 kHz=mT2 quadratic Zeeman shift. Although this is
large relative to other clock candidates it must be remem-
bered that clock operation would be at the field-insensitive
point so that only rms field variations need to be accounted
for. This approach significantly improves the feasibility of a
recent proposal for clock operation with large ion crystals.
We also note that our approach need not be restricted to
ions and may well be useful for neutral atoms in optical
lattices.
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Note added—Recently, calculations for this atom have been
published [29]. The numbers agree well with the values
used here and give a reduction in the magnitude of the C2

coefficient given in the table.

PRL 117, 160802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

160802-4



*phybmd@nus.edu.sg
[1] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland,

and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
[2] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L.

Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley,
and J. Ye, Nature (London) 506, 71 (2014).

[3] J. E. Stalnaker, S. Diddams, T. Fortier, K. Kim, L. Hollberg,
J. Bergquist, W. Itano, M. Delany, L. Lorini, W. Oskay, T.
Heavner, S. Jefferts, F. Levi, T. Parker, and J. Shirley, Appl.
Phys. B 89, 167 (2007).

[4] P. Dube, A. A. Madej, Z. Zhou, and J. E. Bernard, Phys.
Rev. A 87, 023806 (2013).

[5] N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C.
Tamm, and E. Peik, Phys. Rev. Lett. 108, 090801 (2012).

[6] Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. Zhao,
J. Zhang, Z. Lu, L. J. Wang, T. Becker, and H. Walther,
Opt. Commun. 273, 526 (2007).

[7] Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V.
Taichenachev, and V. I. Yudin, Phys. Rev. Lett. 96, 083002
(2006).

[8] A. D. Ludlow, M.M. Boyd, J. Ye, E. Peik, and P. Schmidt,
Rev. Mod. Phys. 87, 637 (2015).

[9] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo,
N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and
A. D. Ludlow, Science 341, 1215 (2013).

[10] K. Arnold, E. Hajiyev, E. Paez, C. H. Lee, M. D. Barrett, and
J. Bollinger, Phys. Rev. A 92, 032108 (2015).

[11] M. S. Safronova, M. G. Kozlov, and C.W. Clark, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 59, 439 (2012).

[12] B. K. Sahoo, R. G. E. Timmermans, B. P. Das, and D.
Mukherjee, Phys. Rev. A 80, 062506 (2009).

[13] A. Kozlov, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A
90, 042505 (2014).

[14] M. D. Barrett, New J. Phys. 17, 053024 (2015).
[15] P. Dubè, A. A. Madej, J. E. Bernard, L. Marmet, J.-S.

Boulanger, and S. Cundy, Phys. Rev. Lett. 95, 033001
(2005).

[16] S. Schiller, D. Bakalov, and V. I. Korobov, Phys. Rev. Lett.
113, 023004 (2014).

[17] W.M. Itano, J. Res. Natl. Inst. Stand. Technol. 105, 829
(2000).

[18] B. Arora, M. S. Safronova, and C.W. Clark, Phys. Rev. A
76, 052509 (2007).

[19] F. L. Kien, P. Schneeweiss, and A. Rauschenbeutal, Eur.
Phys. J. D 67, 92 (2013).

[20] J. Benhelm, G. Kirchmair, U. Rapol, T. Körber, C. F. Roos,
and R. Blatt, Phys. Rev. A 75, 032506 (2007).

[21] H. Sunaoshi, Y. Fukashiro, M. Furukawa, M. Yamauchi, S.
Hayashibe, T. Shinozuka, M. Fujioka, I. Satoh, M. Wada,
and S. Matsuki, Hyperfine Interact. 78, 241 (1993).

[22] U. I. Safronova, Phys. Rev. A 82, 022504 (2010).
[23] R. Blatt and G. Werth, Phys. Rev. A 25, 1476 (1982).
[24] N. C. Lewty, B. L. Chuah, R. Cazan, and M. D. Barrett,

Opt. Express 20, 21379 (2012).
[25] W. R. Johnson and U. I. Safronova (private communication).

They have provided AðS1=2Þ ¼ 13158.4 MHz, AðD3=2Þ ¼
504.7 MHz and BðD3=2Þ ¼ 1957.4 MHz.

[26] H. Schüler and H. Gollnow, Z. Phys. 113, 1 (1939).
[27] P. P. E. Biémont, Z. S. Li, and P. Quinet, J. Phys. B 32, 3409

(1999).
[28] M. Gu, Can. J. Phys. 86, 675 (2008).
[29] U. I. Safronova, M. S. Safronova, and W. R. Johnson, Phys.

Rev. A 94, 032506 (2016).

PRL 117, 160802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

160802-5

http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1007/s00340-007-2762-z
http://dx.doi.org/10.1007/s00340-007-2762-z
http://dx.doi.org/10.1103/PhysRevA.87.023806
http://dx.doi.org/10.1103/PhysRevA.87.023806
http://dx.doi.org/10.1103/PhysRevLett.108.090801
http://dx.doi.org/10.1016/j.optcom.2007.01.068
http://dx.doi.org/10.1103/PhysRevLett.96.083002
http://dx.doi.org/10.1103/PhysRevLett.96.083002
http://dx.doi.org/10.1103/RevModPhys.87.637
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1103/PhysRevA.92.032108
http://dx.doi.org/10.1109/TUFFC.2012.2213
http://dx.doi.org/10.1109/TUFFC.2012.2213
http://dx.doi.org/10.1103/PhysRevA.80.062506
http://dx.doi.org/10.1103/PhysRevA.90.042505
http://dx.doi.org/10.1103/PhysRevA.90.042505
http://dx.doi.org/10.1088/1367-2630/17/5/053024
http://dx.doi.org/10.1103/PhysRevLett.95.033001
http://dx.doi.org/10.1103/PhysRevLett.95.033001
http://dx.doi.org/10.1103/PhysRevLett.113.023004
http://dx.doi.org/10.1103/PhysRevLett.113.023004
http://dx.doi.org/10.6028/jres.105.065
http://dx.doi.org/10.6028/jres.105.065
http://dx.doi.org/10.1103/PhysRevA.76.052509
http://dx.doi.org/10.1103/PhysRevA.76.052509
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1103/PhysRevA.75.032506
http://dx.doi.org/10.1007/BF00568145
http://dx.doi.org/10.1103/PhysRevA.82.022504
http://dx.doi.org/10.1103/PhysRevA.25.1476
http://dx.doi.org/10.1364/OE.20.021379
http://dx.doi.org/10.1007/BF01371650
http://dx.doi.org/10.1088/0953-4075/32/14/311
http://dx.doi.org/10.1088/0953-4075/32/14/311
http://dx.doi.org/10.1139/P07-197
http://dx.doi.org/10.1103/PhysRevA.94.032506
http://dx.doi.org/10.1103/PhysRevA.94.032506

